优化的注意力诱导多头卷积神经网络,利用皮肤镜图像进行高效的netv2黑色素瘤分类。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M Maheswari, Mohamed Uvaze Ahamed Ayoobkhan, C P Shirley, T R Vijaya Lakshmi
{"title":"优化的注意力诱导多头卷积神经网络,利用皮肤镜图像进行高效的netv2黑色素瘤分类。","authors":"M Maheswari, Mohamed Uvaze Ahamed Ayoobkhan, C P Shirley, T R Vijaya Lakshmi","doi":"10.1007/s11517-024-03106-y","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is an uncommon and dangerous type of skin cancer. Dermoscopic imaging aids skilled dermatologists in detection, yet the nuances between melanoma and non-melanoma conditions complicate diagnosis. Early identification of melanoma is vital for successful treatment, but manual diagnosis is time-consuming and requires a dermatologist with training. To overcome this issue, this article proposes an Optimized Attention-Induced Multihead Convolutional Neural Network with EfficientNetV2-fostered melanoma classification using dermoscopic images (AIMCNN-ENetV2-MC). The input pictures are extracted from the dermoscopic images dataset. Adaptive Distorted Gaussian Matched Filter (ADGMF) is used to remove the noise and maximize the superiority of skin dermoscopic images. These pre-processed images are fed to AIMCNN. The AIMCNN-ENetV2 classifies acral melanoma and benign nevus. Boosted Chimp Optimization Algorithm (BCOA) optimizes the AIMCNN-ENetV2 classifier for accurate classification. The proposed AIMCNN-ENetV2-MC is implemented using Python. The proposed approach attains an outstanding overall accuracy of 98.75%, less computation time of 98 s compared with the existing models.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized attention-induced multihead convolutional neural network with efficientnetv2-fostered melanoma classification using dermoscopic images.\",\"authors\":\"M Maheswari, Mohamed Uvaze Ahamed Ayoobkhan, C P Shirley, T R Vijaya Lakshmi\",\"doi\":\"10.1007/s11517-024-03106-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melanoma is an uncommon and dangerous type of skin cancer. Dermoscopic imaging aids skilled dermatologists in detection, yet the nuances between melanoma and non-melanoma conditions complicate diagnosis. Early identification of melanoma is vital for successful treatment, but manual diagnosis is time-consuming and requires a dermatologist with training. To overcome this issue, this article proposes an Optimized Attention-Induced Multihead Convolutional Neural Network with EfficientNetV2-fostered melanoma classification using dermoscopic images (AIMCNN-ENetV2-MC). The input pictures are extracted from the dermoscopic images dataset. Adaptive Distorted Gaussian Matched Filter (ADGMF) is used to remove the noise and maximize the superiority of skin dermoscopic images. These pre-processed images are fed to AIMCNN. The AIMCNN-ENetV2 classifies acral melanoma and benign nevus. Boosted Chimp Optimization Algorithm (BCOA) optimizes the AIMCNN-ENetV2 classifier for accurate classification. The proposed AIMCNN-ENetV2-MC is implemented using Python. The proposed approach attains an outstanding overall accuracy of 98.75%, less computation time of 98 s compared with the existing models.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03106-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03106-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

黑色素瘤是一种不常见且危险的皮肤癌。皮肤镜成像可帮助熟练的皮肤科医生进行检测,但黑色素瘤和非黑色素瘤之间的细微差别使诊断变得复杂。及早发现黑色素瘤对成功治疗至关重要,但人工诊断费时费力,而且需要受过培训的皮肤科医生。为了解决这个问题,本文提出了一种利用皮肤镜图像进行黑色素瘤分类的优化注意力诱导多头卷积神经网络(AIMCNN-ENetV2-MC)。输入图片是从皮肤镜图像数据集中提取的。使用自适应失真高斯匹配滤波器(ADGMF)去除噪声,最大限度地提高皮肤镜图像的优越性。这些经过预处理的图像被输入 AIMCNN。AIMCNN-ENetV2 对尖锐黑色素瘤和良性痣进行分类。Boosted Chimp 优化算法(BCOA)对 AIMCNN-ENetV2 分类器进行优化,以实现准确分类。拟议的 AIMCNN-ENetV2-MC 使用 Python 实现。与现有模型相比,该方法的总体准确率高达 98.75%,计算时间仅为 98 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimized attention-induced multihead convolutional neural network with efficientnetv2-fostered melanoma classification using dermoscopic images.

Optimized attention-induced multihead convolutional neural network with efficientnetv2-fostered melanoma classification using dermoscopic images.

Melanoma is an uncommon and dangerous type of skin cancer. Dermoscopic imaging aids skilled dermatologists in detection, yet the nuances between melanoma and non-melanoma conditions complicate diagnosis. Early identification of melanoma is vital for successful treatment, but manual diagnosis is time-consuming and requires a dermatologist with training. To overcome this issue, this article proposes an Optimized Attention-Induced Multihead Convolutional Neural Network with EfficientNetV2-fostered melanoma classification using dermoscopic images (AIMCNN-ENetV2-MC). The input pictures are extracted from the dermoscopic images dataset. Adaptive Distorted Gaussian Matched Filter (ADGMF) is used to remove the noise and maximize the superiority of skin dermoscopic images. These pre-processed images are fed to AIMCNN. The AIMCNN-ENetV2 classifies acral melanoma and benign nevus. Boosted Chimp Optimization Algorithm (BCOA) optimizes the AIMCNN-ENetV2 classifier for accurate classification. The proposed AIMCNN-ENetV2-MC is implemented using Python. The proposed approach attains an outstanding overall accuracy of 98.75%, less computation time of 98 s compared with the existing models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信