{"title":"心肌细胞βII谱蛋白通过调节线粒体呼吸功能,在维持心脏功能方面发挥着至关重要的作用。","authors":"Rongjin Yang, Banjun Ruan, Rutao Wang, Xiaomeng Zhang, Pingping Xing, Congye Li, Yunyun Zhang, Xiaoqian Chang, Haifeng Song, Shun Zhang, Huishou Zhao, Feiyu Zhang, Tao Yin, Tingting Qi, Wenjun Yan, Fuyang Zhang, Guangyu Hu, Shan Wang, Ling Tao","doi":"10.1093/cvr/cvae116","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>βII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of βII spectrin in cardiac contractile function and pathological post-myocardial infarction remodelling remain unclear. Here, we investigated whether and how βII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischaemia/reperfusion (I/R) injury.</p><p><strong>Methods and results: </strong>We observed that the levels of serum βII spectrin breakdown products (βII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, βII spectrin was degraded into βII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific βII spectrin knockout mice, we found that deletion of βII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy, and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific βII spectrin knockout mice had not developed, deletion of βII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of βII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that βII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, βII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75-kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability.</p><p><strong>Conclusion: </strong>βII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in βII spectrin exacerbate cardiac I/R injury.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":"1312-1326"},"PeriodicalIF":10.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiomyocyte βII spectrin plays a critical role in maintaining cardiac function by regulating mitochondrial respiratory function.\",\"authors\":\"Rongjin Yang, Banjun Ruan, Rutao Wang, Xiaomeng Zhang, Pingping Xing, Congye Li, Yunyun Zhang, Xiaoqian Chang, Haifeng Song, Shun Zhang, Huishou Zhao, Feiyu Zhang, Tao Yin, Tingting Qi, Wenjun Yan, Fuyang Zhang, Guangyu Hu, Shan Wang, Ling Tao\",\"doi\":\"10.1093/cvr/cvae116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>βII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of βII spectrin in cardiac contractile function and pathological post-myocardial infarction remodelling remain unclear. Here, we investigated whether and how βII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischaemia/reperfusion (I/R) injury.</p><p><strong>Methods and results: </strong>We observed that the levels of serum βII spectrin breakdown products (βII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, βII spectrin was degraded into βII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific βII spectrin knockout mice, we found that deletion of βII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy, and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific βII spectrin knockout mice had not developed, deletion of βII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of βII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that βII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, βII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75-kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability.</p><p><strong>Conclusion: </strong>βII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in βII spectrin exacerbate cardiac I/R injury.</p>\",\"PeriodicalId\":9638,\"journal\":{\"name\":\"Cardiovascular Research\",\"volume\":\" \",\"pages\":\"1312-1326\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cvr/cvae116\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae116","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Cardiomyocyte βII spectrin plays a critical role in maintaining cardiac function by regulating mitochondrial respiratory function.
Aims: βII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of βII spectrin in cardiac contractile function and pathological post-myocardial infarction remodelling remain unclear. Here, we investigated whether and how βII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischaemia/reperfusion (I/R) injury.
Methods and results: We observed that the levels of serum βII spectrin breakdown products (βII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, βII spectrin was degraded into βII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific βII spectrin knockout mice, we found that deletion of βII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy, and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific βII spectrin knockout mice had not developed, deletion of βII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of βII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that βII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, βII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75-kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability.
Conclusion: βII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in βII spectrin exacerbate cardiac I/R injury.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases