关于一类非线性分数薛定谔-泊松系统解的存在性:亚临界和临界情况

IF 2.5 2区 数学 Q1 MATHEMATICS
Lin Li, Huo Tao, Stepan Tersian
{"title":"关于一类非线性分数薛定谔-泊松系统解的存在性:亚临界和临界情况","authors":"Lin Li, Huo Tao, Stepan Tersian","doi":"10.1007/s13540-024-00296-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the existence of standing wave solutions for a class of nonlinear fractional Schrödinger-Poisson system involving nonlinearity with subcritical and critical growth. We suppose that the potential <i>V</i> satisfies either Palais-Smale type condition or there exists a bounded domain <span>\\(\\varOmega \\)</span> such that <i>V</i> has no critical point in <span>\\(\\partial \\varOmega \\)</span>. To overcome the “lack of compactness\" of the problem, we combine Del Pino-Felmer’s penalization technique with Moser’s iteration method and some ideas from Alves [1].</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"42 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of solutions for a class of nonlinear fractional Schrödinger-Poisson system: Subcritical and critical cases\",\"authors\":\"Lin Li, Huo Tao, Stepan Tersian\",\"doi\":\"10.1007/s13540-024-00296-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish the existence of standing wave solutions for a class of nonlinear fractional Schrödinger-Poisson system involving nonlinearity with subcritical and critical growth. We suppose that the potential <i>V</i> satisfies either Palais-Smale type condition or there exists a bounded domain <span>\\\\(\\\\varOmega \\\\)</span> such that <i>V</i> has no critical point in <span>\\\\(\\\\partial \\\\varOmega \\\\)</span>. To overcome the “lack of compactness\\\" of the problem, we combine Del Pino-Felmer’s penalization technique with Moser’s iteration method and some ideas from Alves [1].</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00296-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00296-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一类非线性分式薛定谔-泊松系统的驻波解的存在性,该系统涉及具有亚临界和临界增长的非线性。我们假设势 V 满足 Palais-Smale 类型条件,或者存在一个有界域 \(\varOmega \),使得 V 在 \(\partial \varOmega \)中没有临界点。为了克服问题的 "不紧凑性",我们将 Del Pino-Felmer 的惩罚技术与 Moser 的迭代法以及 Alves [1] 的一些观点结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of solutions for a class of nonlinear fractional Schrödinger-Poisson system: Subcritical and critical cases

In this paper, we establish the existence of standing wave solutions for a class of nonlinear fractional Schrödinger-Poisson system involving nonlinearity with subcritical and critical growth. We suppose that the potential V satisfies either Palais-Smale type condition or there exists a bounded domain \(\varOmega \) such that V has no critical point in \(\partial \varOmega \). To overcome the “lack of compactness" of the problem, we combine Del Pino-Felmer’s penalization technique with Moser’s iteration method and some ideas from Alves [1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信