Ronda D. Conner Koski, James E. Klett, Daniel Burcham
{"title":"光周期处理对三个多年生观赏植物品种的栽培植株和扦插生根的影响","authors":"Ronda D. Conner Koski, James E. Klett, Daniel Burcham","doi":"10.21273/horttech05368-23","DOIUrl":null,"url":null,"abstract":"Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Photoperiod Treatments on Stock Plants and Cutting Rooting of Three Cultivars of Ornamental Perennials\",\"authors\":\"Ronda D. Conner Koski, James E. Klett, Daniel Burcham\",\"doi\":\"10.21273/horttech05368-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.\",\"PeriodicalId\":13144,\"journal\":{\"name\":\"Horttechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horttechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/horttech05368-23\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horttechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/horttech05368-23","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
Effects of Photoperiod Treatments on Stock Plants and Cutting Rooting of Three Cultivars of Ornamental Perennials
Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.
期刊介绍:
HortTechnology serves as the primary outreach publication of the American Society for Horticultural Science. Its mission is to provide science-based information to professional horticulturists, practitioners, and educators; promote and encourage an interchange of ideas among scientists, educators, and professionals working in horticulture; and provide an opportunity for peer review of practical horticultural information.