Mohammed El Assad, Said Nouh, Imrane Chemseddine Idrissi, Seddiq El Kasmi Alaoui, Bouchaib Aylaj, M. Azzouazi
{"title":"基于集合学习模型的新型高效线性块编码解码器:提升案例","authors":"Mohammed El Assad, Said Nouh, Imrane Chemseddine Idrissi, Seddiq El Kasmi Alaoui, Bouchaib Aylaj, M. Azzouazi","doi":"10.11591/ijai.v13.i2.pp2236-2246","DOIUrl":null,"url":null,"abstract":"Error-correcting codes are used to partially or completely correct errors as much as possible, while ensuring high transmission speeds. Several Machine Learning (ML) models such as Logistic Regression and Decision tree have been applied to correct transmission errors. Among the most powerful ML techniques are aggregation methods which have yielded to excellent results in many areas of research. It is this excellence that has prompted us to consider their application for the hard decoding problem. In this sense, we have successfully designed, tested and validated our proposed EL-BoostDec decoder (hard decision decoder based on Ensemble Learning - Boosting technique) which is based on computing of the syndrome of the received word and on using Ensemble Learning techniques to find the corresponding corrigible error. The obtained results with EL-BoostDec are very encouraging in terms of the binary error rate (BER) that it offers. Practically EL-BoostDec has succeed to correct 100% of errors that have weights less than or equal to the correction capacity of studied codes. The comparison of EL-BoostDec with many competitors proves its power. A study of parameters which impact on EL-BoostDec performances has been established to obtain a good BER with minimum run time complexity.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"115 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new efficient decoder of linear block codes based on ensemble learning models: case of boosting\",\"authors\":\"Mohammed El Assad, Said Nouh, Imrane Chemseddine Idrissi, Seddiq El Kasmi Alaoui, Bouchaib Aylaj, M. Azzouazi\",\"doi\":\"10.11591/ijai.v13.i2.pp2236-2246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Error-correcting codes are used to partially or completely correct errors as much as possible, while ensuring high transmission speeds. Several Machine Learning (ML) models such as Logistic Regression and Decision tree have been applied to correct transmission errors. Among the most powerful ML techniques are aggregation methods which have yielded to excellent results in many areas of research. It is this excellence that has prompted us to consider their application for the hard decoding problem. In this sense, we have successfully designed, tested and validated our proposed EL-BoostDec decoder (hard decision decoder based on Ensemble Learning - Boosting technique) which is based on computing of the syndrome of the received word and on using Ensemble Learning techniques to find the corresponding corrigible error. The obtained results with EL-BoostDec are very encouraging in terms of the binary error rate (BER) that it offers. Practically EL-BoostDec has succeed to correct 100% of errors that have weights less than or equal to the correction capacity of studied codes. The comparison of EL-BoostDec with many competitors proves its power. A study of parameters which impact on EL-BoostDec performances has been established to obtain a good BER with minimum run time complexity.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"115 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp2236-2246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2236-2246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new efficient decoder of linear block codes based on ensemble learning models: case of boosting
Error-correcting codes are used to partially or completely correct errors as much as possible, while ensuring high transmission speeds. Several Machine Learning (ML) models such as Logistic Regression and Decision tree have been applied to correct transmission errors. Among the most powerful ML techniques are aggregation methods which have yielded to excellent results in many areas of research. It is this excellence that has prompted us to consider their application for the hard decoding problem. In this sense, we have successfully designed, tested and validated our proposed EL-BoostDec decoder (hard decision decoder based on Ensemble Learning - Boosting technique) which is based on computing of the syndrome of the received word and on using Ensemble Learning techniques to find the corresponding corrigible error. The obtained results with EL-BoostDec are very encouraging in terms of the binary error rate (BER) that it offers. Practically EL-BoostDec has succeed to correct 100% of errors that have weights less than or equal to the correction capacity of studied codes. The comparison of EL-BoostDec with many competitors proves its power. A study of parameters which impact on EL-BoostDec performances has been established to obtain a good BER with minimum run time complexity.