用于预测人体性能的堆叠分类器方法

Q2 Mathematics
Noer Rachmat Octavianto, Antoni Wibowo
{"title":"用于预测人体性能的堆叠分类器方法","authors":"Noer Rachmat Octavianto, Antoni Wibowo","doi":"10.11591/ijeecs.v34.i3.pp1832-1839","DOIUrl":null,"url":null,"abstract":"A healthy body is the capital of success and supports human activities. To maintain health, humans need to avoid disease. A healthy life is everyone’s dream and should start early. Busy activities often hinder a healthy lifestyle. Nonetheless, it is important for every individual to lead a healthy lifestyle. Human activities determine health and the implementation of a healthy life. One method that can perform classification with machine learning is extreme gradient boosting (XGBoost). XGBoost is one of the techniques in machine learning for regression analysis and classification based on gradient boosting decision tree (GBDT). By using gradient descent to minimize the error when creating a new model, the algorithm is called gradient boosting. In determining a classification starting from determining the model to the results, usually only using one algorithm method, and combining other methods together with the method is an algorithm called random forest classifier. Among these merging methods are, stacking classifier, voting classifier, and bagging classifier. The conclusion obtained from the results of this research is that the test results show that the stacking classifier achieves the highest accuracy of 76.07%, making it the best method in this research. And the stacking classifier has a precision of 76.96%, recall of 75.83%, and F1-score of 75.81%. This shows that the model has a good balance between the ability to provide true positive results and the ability to recover positive data.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacking classifier method for prediction of human body performance\",\"authors\":\"Noer Rachmat Octavianto, Antoni Wibowo\",\"doi\":\"10.11591/ijeecs.v34.i3.pp1832-1839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A healthy body is the capital of success and supports human activities. To maintain health, humans need to avoid disease. A healthy life is everyone’s dream and should start early. Busy activities often hinder a healthy lifestyle. Nonetheless, it is important for every individual to lead a healthy lifestyle. Human activities determine health and the implementation of a healthy life. One method that can perform classification with machine learning is extreme gradient boosting (XGBoost). XGBoost is one of the techniques in machine learning for regression analysis and classification based on gradient boosting decision tree (GBDT). By using gradient descent to minimize the error when creating a new model, the algorithm is called gradient boosting. In determining a classification starting from determining the model to the results, usually only using one algorithm method, and combining other methods together with the method is an algorithm called random forest classifier. Among these merging methods are, stacking classifier, voting classifier, and bagging classifier. The conclusion obtained from the results of this research is that the test results show that the stacking classifier achieves the highest accuracy of 76.07%, making it the best method in this research. And the stacking classifier has a precision of 76.96%, recall of 75.83%, and F1-score of 75.81%. This shows that the model has a good balance between the ability to provide true positive results and the ability to recover positive data.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v34.i3.pp1832-1839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp1832-1839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

健康的身体是成功的资本,是人类活动的支撑。为了保持健康,人类需要避免疾病。健康的生活是每个人的梦想,应该尽早开始。繁忙的活动往往会妨碍健康的生活方式。然而,健康的生活方式对每个人都很重要。人类活动决定着健康和健康生活的实施。利用机器学习进行分类的一种方法是极端梯度提升(XGBoost)。XGBoost 是机器学习中基于梯度提升决策树(GBDT)进行回归分析和分类的技术之一。在创建新模型时,通过使用梯度下降来最小化误差,该算法被称为梯度提升。在确定分类时,从确定模型到确定结果,通常只使用一种算法方法,而将其他方法结合在一起的方法就是随机森林分类器。在这些合并方法中,有堆叠分类器、投票分类器和袋式分类器。本研究结果得出的结论是:测试结果显示,堆叠分类器的准确率最高,达到 76.07%,是本研究中最好的方法。而堆积分类器的精确度为 76.96%,召回率为 75.83%,F1 分数为 75.81%。这表明该模型在提供真阳性结果的能力和恢复阳性数据的能力之间取得了很好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stacking classifier method for prediction of human body performance
A healthy body is the capital of success and supports human activities. To maintain health, humans need to avoid disease. A healthy life is everyone’s dream and should start early. Busy activities often hinder a healthy lifestyle. Nonetheless, it is important for every individual to lead a healthy lifestyle. Human activities determine health and the implementation of a healthy life. One method that can perform classification with machine learning is extreme gradient boosting (XGBoost). XGBoost is one of the techniques in machine learning for regression analysis and classification based on gradient boosting decision tree (GBDT). By using gradient descent to minimize the error when creating a new model, the algorithm is called gradient boosting. In determining a classification starting from determining the model to the results, usually only using one algorithm method, and combining other methods together with the method is an algorithm called random forest classifier. Among these merging methods are, stacking classifier, voting classifier, and bagging classifier. The conclusion obtained from the results of this research is that the test results show that the stacking classifier achieves the highest accuracy of 76.07%, making it the best method in this research. And the stacking classifier has a precision of 76.96%, recall of 75.83%, and F1-score of 75.81%. This shows that the model has a good balance between the ability to provide true positive results and the ability to recover positive data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信