增强多微电网系统的复原力

Q2 Mathematics
Samira Chalah, Hadjira Belaidi
{"title":"增强多微电网系统的复原力","authors":"Samira Chalah, Hadjira Belaidi","doi":"10.11591/ijeecs.v34.i3.pp1399-1409","DOIUrl":null,"url":null,"abstract":"Nowadays, electricity consumption is increasing rapidly which leads to conventional power systems exhaustion. Therefore, micro-grids (MGs) implantation can enhance the resilience of power systems by implication of new resources, such as renewable energy sources (solar panel and wind power systems), electric vehicles (EV), and energy storage systems (ESS). This paper proposes a new strategy for optimal power consumption inside one microgrid; then, the approach will be extended to optimize the power consumption to enhance the resilience in the case of multi-MGs systems. The system controller of each microgrid has been implemented using ESP32 microcontroller and Raspberry IP4. The proposed approach intends to enhance the resilience of the system to react to any contingency in the system such as loss of power linkage between MG and the network in case of any natural disaster, especially in the rural area. Two controllers are implemented; the first one ensures MG autonomy by the efficient use of its own sources. The second one handles the system resilience cases by demanding/delivering power from/into neighbor microgrids. Hence, this work enhances the system resilience with an optimal cost. Thus, the MG can offer ancillary services for the neighboring MGs.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-microgrids system’s resilience enhancement\",\"authors\":\"Samira Chalah, Hadjira Belaidi\",\"doi\":\"10.11591/ijeecs.v34.i3.pp1399-1409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, electricity consumption is increasing rapidly which leads to conventional power systems exhaustion. Therefore, micro-grids (MGs) implantation can enhance the resilience of power systems by implication of new resources, such as renewable energy sources (solar panel and wind power systems), electric vehicles (EV), and energy storage systems (ESS). This paper proposes a new strategy for optimal power consumption inside one microgrid; then, the approach will be extended to optimize the power consumption to enhance the resilience in the case of multi-MGs systems. The system controller of each microgrid has been implemented using ESP32 microcontroller and Raspberry IP4. The proposed approach intends to enhance the resilience of the system to react to any contingency in the system such as loss of power linkage between MG and the network in case of any natural disaster, especially in the rural area. Two controllers are implemented; the first one ensures MG autonomy by the efficient use of its own sources. The second one handles the system resilience cases by demanding/delivering power from/into neighbor microgrids. Hence, this work enhances the system resilience with an optimal cost. Thus, the MG can offer ancillary services for the neighboring MGs.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v34.i3.pp1399-1409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp1399-1409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如今,用电量迅速增长,导致传统电力系统枯竭。因此,微电网(MGs)的植入可以通过可再生能源(太阳能电池板和风力发电系统)、电动汽车(EV)和储能系统(ESS)等新资源的影响来增强电力系统的弹性。本文提出了一种在一个微电网内优化电力消耗的新策略;然后,该方法将扩展到多微电网系统的电力消耗优化,以提高系统的恢复能力。每个微电网的系统控制器都是通过 ESP32 微控制器和树莓派 IP4 实现的。所提出的方法旨在提高系统的恢复能力,以应对系统中的任何突发事件,例如在发生自然灾害时,特别是在农村地区,MG 与网络之间的电力联系中断。该系统采用了两个控制器:第一个控制器通过有效利用自身的电源来确保 MG 的自主性。第二个控制器通过要求邻近微电网供电/向邻近微电网供电来处理系统恢复情况。因此,这项工作以最优成本增强了系统的恢复能力。因此,微电网可以为邻近的微电网提供辅助服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-microgrids system’s resilience enhancement
Nowadays, electricity consumption is increasing rapidly which leads to conventional power systems exhaustion. Therefore, micro-grids (MGs) implantation can enhance the resilience of power systems by implication of new resources, such as renewable energy sources (solar panel and wind power systems), electric vehicles (EV), and energy storage systems (ESS). This paper proposes a new strategy for optimal power consumption inside one microgrid; then, the approach will be extended to optimize the power consumption to enhance the resilience in the case of multi-MGs systems. The system controller of each microgrid has been implemented using ESP32 microcontroller and Raspberry IP4. The proposed approach intends to enhance the resilience of the system to react to any contingency in the system such as loss of power linkage between MG and the network in case of any natural disaster, especially in the rural area. Two controllers are implemented; the first one ensures MG autonomy by the efficient use of its own sources. The second one handles the system resilience cases by demanding/delivering power from/into neighbor microgrids. Hence, this work enhances the system resilience with an optimal cost. Thus, the MG can offer ancillary services for the neighboring MGs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信