带不对称槽的圆柱体的流动特性:建模与实验研究

IF 1.1 4区 工程技术 Q4 MECHANICS
F. Yan, W. Kong, H. Jiao, F. Peng, J. Zhang
{"title":"带不对称槽的圆柱体的流动特性:建模与实验研究","authors":"F. Yan, W. Kong, H. Jiao, F. Peng, J. Zhang","doi":"10.47176/jafm.17.6.2354","DOIUrl":null,"url":null,"abstract":"This study examined the drag reduction properties of cylindrical flows across various asymmetric notched structures through numerical simulation and particle image velocimetry. The focus was on investigating the influence of the number of asymmetric grooves on the drag characteristics, including the mean drag, spectral characteristics, time-averaged streamlines, separation point prediction, time-averaged pressure, wake vortex strength, Reynolds stress, and turbulent kinetic energy. The results showed that the presence of asymmetric grooves significantly influenced these flow parameters. Notably, the improvement was optimal in the four-groove configuration, evidenced by the lowest mean drag coefficient (0.804), vortex shedding frequency (2.74 Hz), recirculation area length (1.208 D ), and pressure difference across the cylinder (81.76). Moreover, this configuration resulted in the weakest trailing vortex, a 45% reduction in the maximum Reynolds stress (0.011), and a 40.5% decrease in the maximum turbulent kinetic energy (0.05). Thus, the presence of asymmetric grooves had a significant positive effect on the cylindrical flow properties, though the degree of improvement decreased with further increase in the number of grooves.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Characteristics of Cylinders with Asymmetric Grooves: A Modeling and Experimental Study\",\"authors\":\"F. Yan, W. Kong, H. Jiao, F. Peng, J. Zhang\",\"doi\":\"10.47176/jafm.17.6.2354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the drag reduction properties of cylindrical flows across various asymmetric notched structures through numerical simulation and particle image velocimetry. The focus was on investigating the influence of the number of asymmetric grooves on the drag characteristics, including the mean drag, spectral characteristics, time-averaged streamlines, separation point prediction, time-averaged pressure, wake vortex strength, Reynolds stress, and turbulent kinetic energy. The results showed that the presence of asymmetric grooves significantly influenced these flow parameters. Notably, the improvement was optimal in the four-groove configuration, evidenced by the lowest mean drag coefficient (0.804), vortex shedding frequency (2.74 Hz), recirculation area length (1.208 D ), and pressure difference across the cylinder (81.76). Moreover, this configuration resulted in the weakest trailing vortex, a 45% reduction in the maximum Reynolds stress (0.011), and a 40.5% decrease in the maximum turbulent kinetic energy (0.05). Thus, the presence of asymmetric grooves had a significant positive effect on the cylindrical flow properties, though the degree of improvement decreased with further increase in the number of grooves.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.6.2354\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2354","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过数值模拟和粒子图像测速仪研究了圆柱形气流穿过各种非对称凹槽结构时的阻力减小特性。重点研究了非对称凹槽数量对阻力特性的影响,包括平均阻力、频谱特性、时间平均流线、分离点预测、时间平均压力、尾流涡旋强度、雷诺应力和湍流动能。结果表明,不对称凹槽的存在对这些流动参数有显著影响。值得注意的是,四凹槽配置的改善效果最佳,表现在平均阻力系数(0.804)、涡流脱落频率(2.74 Hz)、再循环区域长度(1.208 D)和跨气缸压差(81.76)最低。此外,这种配置产生的尾涡最弱,最大雷诺应力(0.011)降低了 45%,最大湍流动能(0.05)降低了 40.5%。因此,不对称凹槽的存在对圆柱形流动特性有显著的积极影响,尽管改善程度随着凹槽数量的进一步增加而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow Characteristics of Cylinders with Asymmetric Grooves: A Modeling and Experimental Study
This study examined the drag reduction properties of cylindrical flows across various asymmetric notched structures through numerical simulation and particle image velocimetry. The focus was on investigating the influence of the number of asymmetric grooves on the drag characteristics, including the mean drag, spectral characteristics, time-averaged streamlines, separation point prediction, time-averaged pressure, wake vortex strength, Reynolds stress, and turbulent kinetic energy. The results showed that the presence of asymmetric grooves significantly influenced these flow parameters. Notably, the improvement was optimal in the four-groove configuration, evidenced by the lowest mean drag coefficient (0.804), vortex shedding frequency (2.74 Hz), recirculation area length (1.208 D ), and pressure difference across the cylinder (81.76). Moreover, this configuration resulted in the weakest trailing vortex, a 45% reduction in the maximum Reynolds stress (0.011), and a 40.5% decrease in the maximum turbulent kinetic energy (0.05). Thus, the presence of asymmetric grooves had a significant positive effect on the cylindrical flow properties, though the degree of improvement decreased with further increase in the number of grooves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信