{"title":"分析寄生电容对基于锁存器的感应放大器布局的影响,以提高 SRAM 性能","authors":"Van-Khoa Pham, Chi-Chia Sun","doi":"10.11591/ijeecs.v34.i3.pp1472-1481","DOIUrl":null,"url":null,"abstract":"Static random-access memory (SRAM) technology is utilized in designing cache memory to enhance the processing performance of computer systems. The sense amplifier (SA) circuit, a crucial component of memory design, significantly impacts data access time and power consumption. In comparison to conventional differential sense amplifiers (DSA) designs, latch-based sense amplifiers (LSA) used in memory-based computing platforms have specific requirements, including robust noise resistance in harsh working environments and low power consumption, particularly for internet of thing (IoT) embedded computing applications. However, the performance can be degraded due to various factors that arise during the layout, such as conductor resistance or the development of parasitic capacitance. Therefore, this study employs low-voltage 22 nm UMC CMOS technology for LSA design layout and analyzes the factors influencing design performance post-layout process. Layout design optimization techniques are applied to mitigate the impact of parasitic capacitance on important signal lines such as data line/data line bar (DLL/DLLB). Based on the performance analysis results, it is possible to achieve a reduction in power consumption of up to 15% and a 5% decrease in read delay time by implementing circuit layout LSA design optimization techniques.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the parasitic capacitance effects on the layout of latch-based sense amplifiers for improving SRAM performance\",\"authors\":\"Van-Khoa Pham, Chi-Chia Sun\",\"doi\":\"10.11591/ijeecs.v34.i3.pp1472-1481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static random-access memory (SRAM) technology is utilized in designing cache memory to enhance the processing performance of computer systems. The sense amplifier (SA) circuit, a crucial component of memory design, significantly impacts data access time and power consumption. In comparison to conventional differential sense amplifiers (DSA) designs, latch-based sense amplifiers (LSA) used in memory-based computing platforms have specific requirements, including robust noise resistance in harsh working environments and low power consumption, particularly for internet of thing (IoT) embedded computing applications. However, the performance can be degraded due to various factors that arise during the layout, such as conductor resistance or the development of parasitic capacitance. Therefore, this study employs low-voltage 22 nm UMC CMOS technology for LSA design layout and analyzes the factors influencing design performance post-layout process. Layout design optimization techniques are applied to mitigate the impact of parasitic capacitance on important signal lines such as data line/data line bar (DLL/DLLB). Based on the performance analysis results, it is possible to achieve a reduction in power consumption of up to 15% and a 5% decrease in read delay time by implementing circuit layout LSA design optimization techniques.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v34.i3.pp1472-1481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp1472-1481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Analysis of the parasitic capacitance effects on the layout of latch-based sense amplifiers for improving SRAM performance
Static random-access memory (SRAM) technology is utilized in designing cache memory to enhance the processing performance of computer systems. The sense amplifier (SA) circuit, a crucial component of memory design, significantly impacts data access time and power consumption. In comparison to conventional differential sense amplifiers (DSA) designs, latch-based sense amplifiers (LSA) used in memory-based computing platforms have specific requirements, including robust noise resistance in harsh working environments and low power consumption, particularly for internet of thing (IoT) embedded computing applications. However, the performance can be degraded due to various factors that arise during the layout, such as conductor resistance or the development of parasitic capacitance. Therefore, this study employs low-voltage 22 nm UMC CMOS technology for LSA design layout and analyzes the factors influencing design performance post-layout process. Layout design optimization techniques are applied to mitigate the impact of parasitic capacitance on important signal lines such as data line/data line bar (DLL/DLLB). Based on the performance analysis results, it is possible to achieve a reduction in power consumption of up to 15% and a 5% decrease in read delay time by implementing circuit layout LSA design optimization techniques.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]