论线性均质双波方程

Pub Date : 2024-06-01 DOI:10.4208/jpde.v37.n1.4
Yaqian Bai
{"title":"论线性均质双波方程","authors":"Yaqian Bai","doi":"10.4208/jpde.v37.n1.4","DOIUrl":null,"url":null,"abstract":". The biwave maps are a class of fourth order hyperbolic equations. In this paper, we are interested in the solution formulas of the linear homogeneous biwave equations. Based on the solution formulas and the weighted energy estimate, we can obtain the L ∞ ( R n ) − W N ,1 ( R n ) and L ∞ ( R n ) − W N ,2 ( R n ) estimates, respectively. By our results, we find that the biwave maps enjoy some different properties compared with the standard wave equations","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Linear Homogeneous Biwave Equations\",\"authors\":\"Yaqian Bai\",\"doi\":\"10.4208/jpde.v37.n1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The biwave maps are a class of fourth order hyperbolic equations. In this paper, we are interested in the solution formulas of the linear homogeneous biwave equations. Based on the solution formulas and the weighted energy estimate, we can obtain the L ∞ ( R n ) − W N ,1 ( R n ) and L ∞ ( R n ) − W N ,2 ( R n ) estimates, respectively. By our results, we find that the biwave maps enjoy some different properties compared with the standard wave equations\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v37.n1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v37.n1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.双波映射是一类四阶双曲方程。本文主要研究线性均质双波方程的求解公式。根据求解公式和加权能量估计,我们可以分别得到 L ∞ ( R n ) - W N ,1 ( R n ) 和 L ∞ ( R n ) - W N ,2 ( R n ) 估计值。根据我们的结果,我们发现双波图与标准波方程相比具有一些不同的性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Linear Homogeneous Biwave Equations
. The biwave maps are a class of fourth order hyperbolic equations. In this paper, we are interested in the solution formulas of the linear homogeneous biwave equations. Based on the solution formulas and the weighted energy estimate, we can obtain the L ∞ ( R n ) − W N ,1 ( R n ) and L ∞ ( R n ) − W N ,2 ( R n ) estimates, respectively. By our results, we find that the biwave maps enjoy some different properties compared with the standard wave equations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信