{"title":"利用混合 NSGA-II 和 PVDE 技术实现多目标经济负荷调度","authors":"Mothala Chandrashekhar, P. K. Dhal","doi":"10.11591/ijpeds.v15.i2.pp1266-1275","DOIUrl":null,"url":null,"abstract":"Over decades, numerous methods have been used to optimize objective functions. Where cost and emissions clash. The improved non-dominated sorting genetic algorithm (NSGA-II) employs elitism to discover the optimum value and speed convergence in multi-objective optimization problems. Population variant differential evolution algorithm alters differential evolution (DE). The main distinction between DE and population variant differential evolution algorithm (PVDE) is population replenishment. NSGA-II and PVDE are combined in the suggested hybrid approach. The hybrid technique solves multi-objective optimization problems efficiently by combining two or more methods. The hybrid technique solves multi-objective optimization problems well. This optimization problem pits cost vs pollution. The hybrid approach exposes half the population to the NSGA-II algorithm and half to the PVDE algorithm. In optimization problems with opposing aims, such as minimizing costs and emissions, a hybrid technique is utilized to find the optimal solution. Elitist diversity-preserving strategies avoid optimization issues becoming converging too soon. A 10-generator IEEE 39 bus test system was validated using this method. The hybrid NSGA-II and PVDE methodology achieves global optimal solutions with more durability, simplicity, and optimization performance than existing methods.","PeriodicalId":355274,"journal":{"name":"International Journal of Power Electronics and Drive Systems (IJPEDS)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective economic load dispatch using hybrid NSGA-II and PVDE techniques\",\"authors\":\"Mothala Chandrashekhar, P. K. Dhal\",\"doi\":\"10.11591/ijpeds.v15.i2.pp1266-1275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over decades, numerous methods have been used to optimize objective functions. Where cost and emissions clash. The improved non-dominated sorting genetic algorithm (NSGA-II) employs elitism to discover the optimum value and speed convergence in multi-objective optimization problems. Population variant differential evolution algorithm alters differential evolution (DE). The main distinction between DE and population variant differential evolution algorithm (PVDE) is population replenishment. NSGA-II and PVDE are combined in the suggested hybrid approach. The hybrid technique solves multi-objective optimization problems efficiently by combining two or more methods. The hybrid technique solves multi-objective optimization problems well. This optimization problem pits cost vs pollution. The hybrid approach exposes half the population to the NSGA-II algorithm and half to the PVDE algorithm. In optimization problems with opposing aims, such as minimizing costs and emissions, a hybrid technique is utilized to find the optimal solution. Elitist diversity-preserving strategies avoid optimization issues becoming converging too soon. A 10-generator IEEE 39 bus test system was validated using this method. The hybrid NSGA-II and PVDE methodology achieves global optimal solutions with more durability, simplicity, and optimization performance than existing methods.\",\"PeriodicalId\":355274,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems (IJPEDS)\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems (IJPEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijpeds.v15.i2.pp1266-1275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems (IJPEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v15.i2.pp1266-1275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective economic load dispatch using hybrid NSGA-II and PVDE techniques
Over decades, numerous methods have been used to optimize objective functions. Where cost and emissions clash. The improved non-dominated sorting genetic algorithm (NSGA-II) employs elitism to discover the optimum value and speed convergence in multi-objective optimization problems. Population variant differential evolution algorithm alters differential evolution (DE). The main distinction between DE and population variant differential evolution algorithm (PVDE) is population replenishment. NSGA-II and PVDE are combined in the suggested hybrid approach. The hybrid technique solves multi-objective optimization problems efficiently by combining two or more methods. The hybrid technique solves multi-objective optimization problems well. This optimization problem pits cost vs pollution. The hybrid approach exposes half the population to the NSGA-II algorithm and half to the PVDE algorithm. In optimization problems with opposing aims, such as minimizing costs and emissions, a hybrid technique is utilized to find the optimal solution. Elitist diversity-preserving strategies avoid optimization issues becoming converging too soon. A 10-generator IEEE 39 bus test system was validated using this method. The hybrid NSGA-II and PVDE methodology achieves global optimal solutions with more durability, simplicity, and optimization performance than existing methods.