通过粒度计算推进识别心血管疾病的机器学习

Ku Muhammad Naim Ku Khalif, Noryanti Muhammad, Mohd Khairul Bazli Mohd Aziz, Mohammad Isa Irawan, Mohammad Iqbal, Muhammad Nanda Setiawan
{"title":"通过粒度计算推进识别心血管疾病的机器学习","authors":"Ku Muhammad Naim Ku Khalif, Noryanti Muhammad, Mohd Khairul Bazli Mohd Aziz, Mohammad Isa Irawan, Mohammad Iqbal, Muhammad Nanda Setiawan","doi":"10.11591/ijai.v13.i2.pp2433-2440","DOIUrl":null,"url":null,"abstract":"Machine learning in cardiovascular disease has broad applications in healthcare, automatically identifying hidden patterns in vast data without human intervention. Early-stage cardiovascular illness can benefit from machine learning models in drug selection. The integration of granular computing, specifically z-numbers, with machine learning algorithms, is suggested for cardiovascular disease identification. Granular computing enables handling unpredictable and imprecise situations, akin to human cognitive abilities. Machine learning algorithms such as Naïve Bayes, K-Nearest Neighbor (KNN), Random Forest, and Gradient Boosting are commonly used in constructing these models. Experimental findings indicate that incorporating granular computing into machine learning models enhances the ability to represent uncertainty and improves accuracy in cardiovascular disease detection.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"36 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing machine learning for identifying cardiovascular disease via granular computing\",\"authors\":\"Ku Muhammad Naim Ku Khalif, Noryanti Muhammad, Mohd Khairul Bazli Mohd Aziz, Mohammad Isa Irawan, Mohammad Iqbal, Muhammad Nanda Setiawan\",\"doi\":\"10.11591/ijai.v13.i2.pp2433-2440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning in cardiovascular disease has broad applications in healthcare, automatically identifying hidden patterns in vast data without human intervention. Early-stage cardiovascular illness can benefit from machine learning models in drug selection. The integration of granular computing, specifically z-numbers, with machine learning algorithms, is suggested for cardiovascular disease identification. Granular computing enables handling unpredictable and imprecise situations, akin to human cognitive abilities. Machine learning algorithms such as Naïve Bayes, K-Nearest Neighbor (KNN), Random Forest, and Gradient Boosting are commonly used in constructing these models. Experimental findings indicate that incorporating granular computing into machine learning models enhances the ability to represent uncertainty and improves accuracy in cardiovascular disease detection.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"36 43\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp2433-2440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2433-2440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病方面的机器学习在医疗保健领域有着广泛的应用,它可以自动识别大量数据中隐藏的模式,而无需人工干预。在药物选择方面,早期心血管疾病可受益于机器学习模型。建议将粒度计算(特别是 z 数字)与机器学习算法相结合,用于心血管疾病的识别。粒度计算能够处理不可预测和不精确的情况,类似于人类的认知能力。在构建这些模型时,通常会使用 Naïve Bayes、K-Nearest Neighbor (KNN)、Random Forest 和 Gradient Boosting 等机器学习算法。实验结果表明,将粒度计算纳入机器学习模型可增强表示不确定性的能力,并提高心血管疾病检测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing machine learning for identifying cardiovascular disease via granular computing
Machine learning in cardiovascular disease has broad applications in healthcare, automatically identifying hidden patterns in vast data without human intervention. Early-stage cardiovascular illness can benefit from machine learning models in drug selection. The integration of granular computing, specifically z-numbers, with machine learning algorithms, is suggested for cardiovascular disease identification. Granular computing enables handling unpredictable and imprecise situations, akin to human cognitive abilities. Machine learning algorithms such as Naïve Bayes, K-Nearest Neighbor (KNN), Random Forest, and Gradient Boosting are commonly used in constructing these models. Experimental findings indicate that incorporating granular computing into machine learning models enhances the ability to represent uncertainty and improves accuracy in cardiovascular disease detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信