无线传感器网络能量最小化的新优化策略

Hicham Ouchitachen, A. Darif, Mohamed Er-rouidi, Mustapha Johri
{"title":"无线传感器网络能量最小化的新优化策略","authors":"Hicham Ouchitachen, A. Darif, Mohamed Er-rouidi, Mustapha Johri","doi":"10.11591/ijai.v13.i2.pp2265-2274","DOIUrl":null,"url":null,"abstract":"In recent years, evolutionary and metaheuristic algorithms have emerged as crucial tools for optimization in the field of artificial intelligence. These algorithms have the potential to revolutionize various aspects of our lives by leveraging the multidisciplinary nature of wireless sensor networks (WSNs). This study aims to introduce genetic and simulated annealing algorithms as effective solutions for enhancing WSN performance. Our contribution entails two main phases. Firstly, we establish mathematical models and formulate objectives as a nonlinear constrained optimization problem. Secondly, we develop two algorithmic solutions to address the formulated optimization problem. The obtained results from multiple simulations demonstrate the positive impact of the proposed strategies on improving network performance in terms of energy consumption.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"42 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new optimal strategy for energy minimization in wireless sensor networks\",\"authors\":\"Hicham Ouchitachen, A. Darif, Mohamed Er-rouidi, Mustapha Johri\",\"doi\":\"10.11591/ijai.v13.i2.pp2265-2274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, evolutionary and metaheuristic algorithms have emerged as crucial tools for optimization in the field of artificial intelligence. These algorithms have the potential to revolutionize various aspects of our lives by leveraging the multidisciplinary nature of wireless sensor networks (WSNs). This study aims to introduce genetic and simulated annealing algorithms as effective solutions for enhancing WSN performance. Our contribution entails two main phases. Firstly, we establish mathematical models and formulate objectives as a nonlinear constrained optimization problem. Secondly, we develop two algorithmic solutions to address the formulated optimization problem. The obtained results from multiple simulations demonstrate the positive impact of the proposed strategies on improving network performance in terms of energy consumption.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"42 46\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp2265-2274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2265-2274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,进化算法和元启发式算法已成为人工智能领域优化的重要工具。利用无线传感器网络(WSN)的多学科特性,这些算法有可能彻底改变我们生活的方方面面。本研究旨在介绍遗传算法和模拟退火算法,作为提高 WSN 性能的有效解决方案。我们的贡献包括两个主要阶段。首先,我们建立了数学模型,并将目标表述为非线性约束优化问题。其次,我们开发了两种算法解决方案来解决所提出的优化问题。通过多次模拟获得的结果表明,所提出的策略对提高网络能耗性能具有积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new optimal strategy for energy minimization in wireless sensor networks
In recent years, evolutionary and metaheuristic algorithms have emerged as crucial tools for optimization in the field of artificial intelligence. These algorithms have the potential to revolutionize various aspects of our lives by leveraging the multidisciplinary nature of wireless sensor networks (WSNs). This study aims to introduce genetic and simulated annealing algorithms as effective solutions for enhancing WSN performance. Our contribution entails two main phases. Firstly, we establish mathematical models and formulate objectives as a nonlinear constrained optimization problem. Secondly, we develop two algorithmic solutions to address the formulated optimization problem. The obtained results from multiple simulations demonstrate the positive impact of the proposed strategies on improving network performance in terms of energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信