D. Mishra, Prince Kumar, Priyanka Rai, Ayush Kumar, S. Salkuti
{"title":"用于电动汽车行驶里程预测的探索性数据分析:见解与评估","authors":"D. Mishra, Prince Kumar, Priyanka Rai, Ayush Kumar, S. Salkuti","doi":"10.11591/ijape.v13.i2.pp474-482","DOIUrl":null,"url":null,"abstract":"One of the biggest challenges of electric vehicle (EV) users has been predicting the amount of driving time their vehicles will have on one battery charge. Planning a trip and reducing range anxiety depends on an accurate range estimate. This study aims to anticipate the EV driving range using machine learning methods. In this research, several regression models for predicting EV driving range will be developed and compared. A real-world dataset comprising various factors affecting EV range, such as power, trip distance, energy consumption, driving style, and environmental factors, is used for analysis. The dataset is preprocessed using exploratory data analysis methods to manage missing values, outliers, and categorical variables. The findings of this study contribute to the expanding area of EV range prediction and provide EV buyers, producers, and regulators with insightful information. The user experience can be improved, EV adoption can be boosted, and effective charging infrastructure design is made possible with accurate range prediction. The study also highlights the importance of model selection and data pretreatment in making accurate predictions.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"52 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory data analysis for electric vehicle driving range prediction: insights and evaluation\",\"authors\":\"D. Mishra, Prince Kumar, Priyanka Rai, Ayush Kumar, S. Salkuti\",\"doi\":\"10.11591/ijape.v13.i2.pp474-482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the biggest challenges of electric vehicle (EV) users has been predicting the amount of driving time their vehicles will have on one battery charge. Planning a trip and reducing range anxiety depends on an accurate range estimate. This study aims to anticipate the EV driving range using machine learning methods. In this research, several regression models for predicting EV driving range will be developed and compared. A real-world dataset comprising various factors affecting EV range, such as power, trip distance, energy consumption, driving style, and environmental factors, is used for analysis. The dataset is preprocessed using exploratory data analysis methods to manage missing values, outliers, and categorical variables. The findings of this study contribute to the expanding area of EV range prediction and provide EV buyers, producers, and regulators with insightful information. The user experience can be improved, EV adoption can be boosted, and effective charging infrastructure design is made possible with accurate range prediction. The study also highlights the importance of model selection and data pretreatment in making accurate predictions.\",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"52 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v13.i2.pp474-482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v13.i2.pp474-482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploratory data analysis for electric vehicle driving range prediction: insights and evaluation
One of the biggest challenges of electric vehicle (EV) users has been predicting the amount of driving time their vehicles will have on one battery charge. Planning a trip and reducing range anxiety depends on an accurate range estimate. This study aims to anticipate the EV driving range using machine learning methods. In this research, several regression models for predicting EV driving range will be developed and compared. A real-world dataset comprising various factors affecting EV range, such as power, trip distance, energy consumption, driving style, and environmental factors, is used for analysis. The dataset is preprocessed using exploratory data analysis methods to manage missing values, outliers, and categorical variables. The findings of this study contribute to the expanding area of EV range prediction and provide EV buyers, producers, and regulators with insightful information. The user experience can be improved, EV adoption can be boosted, and effective charging infrastructure design is made possible with accurate range prediction. The study also highlights the importance of model selection and data pretreatment in making accurate predictions.