罐体直径对工业反应釜中固体悬浮物的影响

IF 1.1 4区 工程技术 Q4 MECHANICS
D. K. Iyer, †. A.K.Patel
{"title":"罐体直径对工业反应釜中固体悬浮物的影响","authors":"D. K. Iyer, †. A.K.Patel","doi":"10.47176/jafm.17.6.2273","DOIUrl":null,"url":null,"abstract":"Present research study analyses the suitability of baffled reactor vessels with large diameter agitated using the Rushton Turbine (RT) impeller maintained at standard clearance condition for the solid-liquid suspension process. The mean and turbulent flow fields associated with reactor vessels of various diameter were simulated using Computational Fluid Dynamics (CFD) approach. The impeller rotation was modelled using Multiple Reference Frame (MRF) technique and entrainment of air was simulated using Volume of Fluid (VOF) method respectively. The increase in the diameter of reactor vessel keeping impeller at standard clearance condition lead to the transition from double to single loop pattern with considerable decrease in the power number. In large reactor vessels, a low pressure zone is developed below the impeller which deflects the discharge streams and trailing vortices towards bottom surface of the reactor vessel causing the formation of single loop down-pumping pattern. The downward propagation of trailing vortices weaken the flow separation region behind the impeller blades which in turn decreases the form drag and power number of the impeller. The development of single loop down-pumping pattern, high magnitudes of axial velocity, vortex and turbulence fields near vessel bottom and inferior entrainment of air makes the large reactor vessels suitable for the solid-liquid suspension process. The high magnitudes of axial velocity developed below the impeller of large reactor vessel with same power consumption as compared to low clearance vessel makes the former vessel configuration more suitable for the solid-liquid suspension process.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Tank Diameter on Solid Suspension in Industrial Reactor Vessels\",\"authors\":\"D. K. Iyer, †. A.K.Patel\",\"doi\":\"10.47176/jafm.17.6.2273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present research study analyses the suitability of baffled reactor vessels with large diameter agitated using the Rushton Turbine (RT) impeller maintained at standard clearance condition for the solid-liquid suspension process. The mean and turbulent flow fields associated with reactor vessels of various diameter were simulated using Computational Fluid Dynamics (CFD) approach. The impeller rotation was modelled using Multiple Reference Frame (MRF) technique and entrainment of air was simulated using Volume of Fluid (VOF) method respectively. The increase in the diameter of reactor vessel keeping impeller at standard clearance condition lead to the transition from double to single loop pattern with considerable decrease in the power number. In large reactor vessels, a low pressure zone is developed below the impeller which deflects the discharge streams and trailing vortices towards bottom surface of the reactor vessel causing the formation of single loop down-pumping pattern. The downward propagation of trailing vortices weaken the flow separation region behind the impeller blades which in turn decreases the form drag and power number of the impeller. The development of single loop down-pumping pattern, high magnitudes of axial velocity, vortex and turbulence fields near vessel bottom and inferior entrainment of air makes the large reactor vessels suitable for the solid-liquid suspension process. The high magnitudes of axial velocity developed below the impeller of large reactor vessel with same power consumption as compared to low clearance vessel makes the former vessel configuration more suitable for the solid-liquid suspension process.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.6.2273\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2273","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究分析了使用保持在标准间隙条件下的拉什顿涡轮(RT)叶轮搅拌的大直径障板反应器在固液悬浮过程中的适用性。采用计算流体动力学(CFD)方法模拟了与不同直径反应器相关的平均流场和湍流场。叶轮旋转采用多参考框架(MRF)技术建模,空气夹带则分别采用流体体积(VOF)方法模拟。在叶轮保持标准间隙的条件下,反应容器直径的增加导致从双回路模式过渡到单回路模式,功率数大幅下降。在大型反应器容器中,叶轮下方会形成一个低压区,使排出的气流和尾流漩涡向反应器容器底面偏转,从而形成单回路下泵模式。尾流涡旋的向下传播削弱了叶轮叶片后的流动分离区,进而降低了叶轮的形式阻力和功率数。单回路向下泵送模式的发展、容器底部附近的高轴向速度、涡旋和湍流场以及较低的空气夹带使得大型反应器容器适合固液悬浮工艺。与低间隙容器相比,大型反应器叶轮下方产生的轴向流速较高,但功耗相同,因此前者更适合固液悬浮工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Tank Diameter on Solid Suspension in Industrial Reactor Vessels
Present research study analyses the suitability of baffled reactor vessels with large diameter agitated using the Rushton Turbine (RT) impeller maintained at standard clearance condition for the solid-liquid suspension process. The mean and turbulent flow fields associated with reactor vessels of various diameter were simulated using Computational Fluid Dynamics (CFD) approach. The impeller rotation was modelled using Multiple Reference Frame (MRF) technique and entrainment of air was simulated using Volume of Fluid (VOF) method respectively. The increase in the diameter of reactor vessel keeping impeller at standard clearance condition lead to the transition from double to single loop pattern with considerable decrease in the power number. In large reactor vessels, a low pressure zone is developed below the impeller which deflects the discharge streams and trailing vortices towards bottom surface of the reactor vessel causing the formation of single loop down-pumping pattern. The downward propagation of trailing vortices weaken the flow separation region behind the impeller blades which in turn decreases the form drag and power number of the impeller. The development of single loop down-pumping pattern, high magnitudes of axial velocity, vortex and turbulence fields near vessel bottom and inferior entrainment of air makes the large reactor vessels suitable for the solid-liquid suspension process. The high magnitudes of axial velocity developed below the impeller of large reactor vessel with same power consumption as compared to low clearance vessel makes the former vessel configuration more suitable for the solid-liquid suspension process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信