Prisma Megantoro, Antik Widi Anugrah, Muhammad Hudzaifah Abdillah, Bambang Joko Kustanto, Marwan Fadhilah, Pandi Vigneshwaran
{"title":"基于物联网遥测系统的水产养殖渔业智能测量和监测系统","authors":"Prisma Megantoro, Antik Widi Anugrah, Muhammad Hudzaifah Abdillah, Bambang Joko Kustanto, Marwan Fadhilah, Pandi Vigneshwaran","doi":"10.11591/eei.v13i3.6900","DOIUrl":null,"url":null,"abstract":"The instrumentation design of an online monitoring device for aquaculture media is discussed in this article. The main processor in this internet of things (IoT) real-time telemetry system is an ESP32 board. Temperature, acidity level, conductivity level, dissolved oxygen (DO) level, and degree of oxygen reduction in the water were the aquaculture parameters measured. The ESP32 collects data from each sensor, groups it into a dataset, displays it on the LCD, saves it to the SD card, and then uploads it to the real-time database. In addition, an Android application is being developed for users. This device has been tested to ensure that each measured parameter is accurate and precise. The accuracy test, one of the major results of laboratory scale tests, demonstrates that each parameter has a different measurement error that represents with average error absolute. Six tested sensors/instruments were subjected to the test. Average absolute error for temperature sensor is +0.76%, pH sensor is +1.52%, electrical conductivity (EC) sensor is +10.8%, oxidation reduction potential (ORP) sensor is +14.6%, DO sensor is +9.3%, and total dissolve solids (TDS) sensor is +13.2%. This device is very dependable and convenient for monitoring the condition of aquaculture media in real-time and accurately.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"15 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart measurement and monitoring system for aquaculture fisheries with IoT-based telemetry system\",\"authors\":\"Prisma Megantoro, Antik Widi Anugrah, Muhammad Hudzaifah Abdillah, Bambang Joko Kustanto, Marwan Fadhilah, Pandi Vigneshwaran\",\"doi\":\"10.11591/eei.v13i3.6900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The instrumentation design of an online monitoring device for aquaculture media is discussed in this article. The main processor in this internet of things (IoT) real-time telemetry system is an ESP32 board. Temperature, acidity level, conductivity level, dissolved oxygen (DO) level, and degree of oxygen reduction in the water were the aquaculture parameters measured. The ESP32 collects data from each sensor, groups it into a dataset, displays it on the LCD, saves it to the SD card, and then uploads it to the real-time database. In addition, an Android application is being developed for users. This device has been tested to ensure that each measured parameter is accurate and precise. The accuracy test, one of the major results of laboratory scale tests, demonstrates that each parameter has a different measurement error that represents with average error absolute. Six tested sensors/instruments were subjected to the test. Average absolute error for temperature sensor is +0.76%, pH sensor is +1.52%, electrical conductivity (EC) sensor is +10.8%, oxidation reduction potential (ORP) sensor is +14.6%, DO sensor is +9.3%, and total dissolve solids (TDS) sensor is +13.2%. This device is very dependable and convenient for monitoring the condition of aquaculture media in real-time and accurately.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.6900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart measurement and monitoring system for aquaculture fisheries with IoT-based telemetry system
The instrumentation design of an online monitoring device for aquaculture media is discussed in this article. The main processor in this internet of things (IoT) real-time telemetry system is an ESP32 board. Temperature, acidity level, conductivity level, dissolved oxygen (DO) level, and degree of oxygen reduction in the water were the aquaculture parameters measured. The ESP32 collects data from each sensor, groups it into a dataset, displays it on the LCD, saves it to the SD card, and then uploads it to the real-time database. In addition, an Android application is being developed for users. This device has been tested to ensure that each measured parameter is accurate and precise. The accuracy test, one of the major results of laboratory scale tests, demonstrates that each parameter has a different measurement error that represents with average error absolute. Six tested sensors/instruments were subjected to the test. Average absolute error for temperature sensor is +0.76%, pH sensor is +1.52%, electrical conductivity (EC) sensor is +10.8%, oxidation reduction potential (ORP) sensor is +14.6%, DO sensor is +9.3%, and total dissolve solids (TDS) sensor is +13.2%. This device is very dependable and convenient for monitoring the condition of aquaculture media in real-time and accurately.