偏差学习的福利比较

Mira Frick, Ryota Iijima, Y. Ishii
{"title":"偏差学习的福利比较","authors":"Mira Frick, Ryota Iijima, Y. Ishii","doi":"10.1257/aer.20210410","DOIUrl":null,"url":null,"abstract":"We study robust welfare comparisons of learning biases (misspecified Bayesian and some forms of non-Bayesian updating). Given a true signal distribution, we deem one bias more harmful than another if it yields lower objective expected payoffs in all decision problems. We characterize this ranking in static and dynamic settings. While the static characterization compares posteriors signal by signal, the dynamic characterization employs an “efficiency index” measuring how fast beliefs converge. We quantify and compare the severity of several well-documented biases. We also highlight disagreements between the static and dynamic rankings, and that some “large” biases dynamically outperform other “vanishingly small” biases. (JEL D60, D82, D83, D91)","PeriodicalId":505466,"journal":{"name":"American Economic Review","volume":"58 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Welfare Comparisons for Biased Learning\",\"authors\":\"Mira Frick, Ryota Iijima, Y. Ishii\",\"doi\":\"10.1257/aer.20210410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study robust welfare comparisons of learning biases (misspecified Bayesian and some forms of non-Bayesian updating). Given a true signal distribution, we deem one bias more harmful than another if it yields lower objective expected payoffs in all decision problems. We characterize this ranking in static and dynamic settings. While the static characterization compares posteriors signal by signal, the dynamic characterization employs an “efficiency index” measuring how fast beliefs converge. We quantify and compare the severity of several well-documented biases. We also highlight disagreements between the static and dynamic rankings, and that some “large” biases dynamically outperform other “vanishingly small” biases. (JEL D60, D82, D83, D91)\",\"PeriodicalId\":505466,\"journal\":{\"name\":\"American Economic Review\",\"volume\":\"58 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Economic Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1257/aer.20210410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Economic Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1257/aer.20210410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了学习偏差(错误贝叶斯更新和某些形式的非贝叶斯更新)的稳健福利比较。在给定真实信号分布的情况下,如果一种偏差在所有决策问题中都能产生较低的客观预期报酬,那么我们就会认为这种偏差比另一种偏差更有害。我们将在静态和动态环境中描述这种排序。静态表征是逐个信号比较后验,而动态表征则采用 "效率指数 "来衡量信念收敛的速度。我们量化并比较了几种有据可查的偏差的严重程度。我们还强调了静态和动态排名之间的分歧,以及一些 "大 "偏差在动态上优于其他 "微不足道 "的偏差。(JEL D60, D82, D83, D91)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Welfare Comparisons for Biased Learning
We study robust welfare comparisons of learning biases (misspecified Bayesian and some forms of non-Bayesian updating). Given a true signal distribution, we deem one bias more harmful than another if it yields lower objective expected payoffs in all decision problems. We characterize this ranking in static and dynamic settings. While the static characterization compares posteriors signal by signal, the dynamic characterization employs an “efficiency index” measuring how fast beliefs converge. We quantify and compare the severity of several well-documented biases. We also highlight disagreements between the static and dynamic rankings, and that some “large” biases dynamically outperform other “vanishingly small” biases. (JEL D60, D82, D83, D91)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信