基于深度学习的 COVID 和使用胸部 X 光检测肺炎

Q2 Mathematics
Praveen Kumar, Mira Rakhimzhanova, S. Rawat, Alibek Orynbek, Vikas Kamra
{"title":"基于深度学习的 COVID 和使用胸部 X 光检测肺炎","authors":"Praveen Kumar, Mira Rakhimzhanova, S. Rawat, Alibek Orynbek, Vikas Kamra","doi":"10.11591/ijeecs.v34.i3.pp1944-1952","DOIUrl":null,"url":null,"abstract":"Since the outbreak, the novel coronavirus (COVID-19) has infected more than 180 million people and has taken a toll of 3.91 million lives globally as of June 2021. This virus causes symptoms like fever, cold, and fatigue, and can develop into Pneumonia which can be detected using chest X-rays (CXRs). Therefore, early detection of COVID-19 can help get early medical attention. However, a sudden rise in the number of cases in many countries caused by COVID waves increases the burden on their testing facilities. As a result, they sometimes fail to perform enough testing to contain the spread. This work proposes a deep learning model to detect COVID-19 and Pneumonia based on CXRs. The dataset for our COVID model contains a total of 3,400 CXRs images of COVID-19 patients and 3,400 normal CXRs. The dataset for our Pneumonia model contains 1,300 CXR images of Pneumonia patients and 1,300 normal CXRs. We use convolutional neural network provided by TensorFlow to build our model, which gave 94.17% and 93.55% accuracy for COVID model and Pneumonia model, respectively. Finally, we deployed our model on the web and added a web tracker, which gives us the cases, deaths, and recoveries state-wise and nationwide.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based COVID and Pneumonia detection using chest X-ray\",\"authors\":\"Praveen Kumar, Mira Rakhimzhanova, S. Rawat, Alibek Orynbek, Vikas Kamra\",\"doi\":\"10.11591/ijeecs.v34.i3.pp1944-1952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the outbreak, the novel coronavirus (COVID-19) has infected more than 180 million people and has taken a toll of 3.91 million lives globally as of June 2021. This virus causes symptoms like fever, cold, and fatigue, and can develop into Pneumonia which can be detected using chest X-rays (CXRs). Therefore, early detection of COVID-19 can help get early medical attention. However, a sudden rise in the number of cases in many countries caused by COVID waves increases the burden on their testing facilities. As a result, they sometimes fail to perform enough testing to contain the spread. This work proposes a deep learning model to detect COVID-19 and Pneumonia based on CXRs. The dataset for our COVID model contains a total of 3,400 CXRs images of COVID-19 patients and 3,400 normal CXRs. The dataset for our Pneumonia model contains 1,300 CXR images of Pneumonia patients and 1,300 normal CXRs. We use convolutional neural network provided by TensorFlow to build our model, which gave 94.17% and 93.55% accuracy for COVID model and Pneumonia model, respectively. Finally, we deployed our model on the web and added a web tracker, which gives us the cases, deaths, and recoveries state-wise and nationwide.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v34.i3.pp1944-1952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp1944-1952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

自疫情爆发以来,新型冠状病毒(COVID-19)已感染超过 1.8 亿人,截至 2021 年 6 月,全球已有 391 万人因此丧生。这种病毒会导致发烧、感冒和疲劳等症状,并可能发展成肺炎,而肺炎可以通过胸部 X 光检查(CXR)发现。因此,及早发现 COVID-19 有助于及早就医。然而,在许多国家,由 COVID 病毒引起的病例数突然增加,加重了检测机构的负担。因此,这些机构有时无法进行足够的检测来控制传播。本研究提出了一种基于 CXR 的深度学习模型来检测 COVID-19 和肺炎。COVID 模型的数据集包含 3400 张 COVID-19 患者的 CXR 图像和 3400 张正常 CXR 图像。肺炎模型的数据集包含 1,300 张肺炎患者的 CXR 图像和 1,300 张正常 CXR 图像。我们使用 TensorFlow 提供的卷积神经网络构建模型,COVID 模型和肺炎模型的准确率分别为 94.17% 和 93.55%。最后,我们在网络上部署了我们的模型,并添加了一个网络跟踪器,该跟踪器可提供各州和全国的病例、死亡和康复情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning based COVID and Pneumonia detection using chest X-ray
Since the outbreak, the novel coronavirus (COVID-19) has infected more than 180 million people and has taken a toll of 3.91 million lives globally as of June 2021. This virus causes symptoms like fever, cold, and fatigue, and can develop into Pneumonia which can be detected using chest X-rays (CXRs). Therefore, early detection of COVID-19 can help get early medical attention. However, a sudden rise in the number of cases in many countries caused by COVID waves increases the burden on their testing facilities. As a result, they sometimes fail to perform enough testing to contain the spread. This work proposes a deep learning model to detect COVID-19 and Pneumonia based on CXRs. The dataset for our COVID model contains a total of 3,400 CXRs images of COVID-19 patients and 3,400 normal CXRs. The dataset for our Pneumonia model contains 1,300 CXR images of Pneumonia patients and 1,300 normal CXRs. We use convolutional neural network provided by TensorFlow to build our model, which gave 94.17% and 93.55% accuracy for COVID model and Pneumonia model, respectively. Finally, we deployed our model on the web and added a web tracker, which gives us the cases, deaths, and recoveries state-wise and nationwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信