利用多特征堆叠和数据增强,通过深度学习提高语音情感识别能力

Khasyi Al Mukarram, M. A. Mukhlas, Amalia Zahra
{"title":"利用多特征堆叠和数据增强,通过深度学习提高语音情感识别能力","authors":"Khasyi Al Mukarram, M. A. Mukhlas, Amalia Zahra","doi":"10.11591/eei.v13i3.6049","DOIUrl":null,"url":null,"abstract":"This study evaluates the effectiveness of data augmentation on 1D convolutional neural network (CNN) and transformer models for speech emotion recognition (SER) on the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset. The results show that data augmentation has a positive impact on improving emotion classification accuracy. Techniques such as noising, pitching, stretching, shifting, and speeding are applied to increase data variation and overcome class imbalance. The 1D CNN model with data augmentation achieved 94.5% accuracy, while the transformer model with data augmentation performed even better at 97.5%. This research is expected to contribute better insights for the development of accurate emotion recognition methods by using data augmentation with these models to improve classification accuracy on the RAVDESS dataset. Further research can explore larger and more diverse datasets and alternative model approaches.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"41 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing speech emotion recognition with deep learning using multi-feature stacking and data augmentation\",\"authors\":\"Khasyi Al Mukarram, M. A. Mukhlas, Amalia Zahra\",\"doi\":\"10.11591/eei.v13i3.6049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates the effectiveness of data augmentation on 1D convolutional neural network (CNN) and transformer models for speech emotion recognition (SER) on the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset. The results show that data augmentation has a positive impact on improving emotion classification accuracy. Techniques such as noising, pitching, stretching, shifting, and speeding are applied to increase data variation and overcome class imbalance. The 1D CNN model with data augmentation achieved 94.5% accuracy, while the transformer model with data augmentation performed even better at 97.5%. This research is expected to contribute better insights for the development of accurate emotion recognition methods by using data augmentation with these models to improve classification accuracy on the RAVDESS dataset. Further research can explore larger and more diverse datasets and alternative model approaches.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"41 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.6049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在瑞尔森情感语音和歌曲视听数据库(RAVDESS)数据集上评估了数据增强对一维卷积神经网络(CNN)和变换器模型进行语音情感识别(SER)的效果。结果表明,数据增强对提高情感分类准确性有积极影响。为了增加数据的变化和克服类的不平衡,采用了噪声、音调、拉伸、移位和加速等技术。使用数据增强的一维 CNN 模型达到了 94.5% 的准确率,而使用数据增强的变压器模型的准确率更高,达到了 97.5%。这项研究通过使用数据增强和这些模型来提高 RAVDESS 数据集的分类准确率,有望为开发准确的情感识别方法提供更好的见解。进一步的研究可以探索更大、更多样化的数据集和其他模型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing speech emotion recognition with deep learning using multi-feature stacking and data augmentation
This study evaluates the effectiveness of data augmentation on 1D convolutional neural network (CNN) and transformer models for speech emotion recognition (SER) on the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset. The results show that data augmentation has a positive impact on improving emotion classification accuracy. Techniques such as noising, pitching, stretching, shifting, and speeding are applied to increase data variation and overcome class imbalance. The 1D CNN model with data augmentation achieved 94.5% accuracy, while the transformer model with data augmentation performed even better at 97.5%. This research is expected to contribute better insights for the development of accurate emotion recognition methods by using data augmentation with these models to improve classification accuracy on the RAVDESS dataset. Further research can explore larger and more diverse datasets and alternative model approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信