超启发式算法在考试时间安排问题上的性能分析

A. Muklason, Yusnardo Tendio, Helena Angelita Depari, Muhammad Arif Nuriman, Gusti Agung Premananda
{"title":"超启发式算法在考试时间安排问题上的性能分析","authors":"A. Muklason, Yusnardo Tendio, Helena Angelita Depari, Muhammad Arif Nuriman, Gusti Agung Premananda","doi":"10.11591/ijai.v13.i2.pp2155-2164","DOIUrl":null,"url":null,"abstract":"In general, uncapacitated exam timetabling is conducted manually, which can be time-consuming. Many studies aim to automate and optimize uncapacitated exam timetabling. However, pinpointing the most efficient algorithm is challenging since most studies assert that their algorithms surpass previous ones. To identify the optimal algorithm, this research evaluates the performance of four algorithms: Hill climbing (HC), simulated annealing (SA), great deluge (GD), and tabu search (TS) in addressing the exam timetabling problem. The Kempe chain operator’s influence on optimization solutions is also examined. A simple random method is employed to select the low-level heuristic (LLH). The Carter (Toronto) dataset served as the test material, with each algorithm undergoing 200,000 iterations for comparison. The results indicate that the TS algorithm is superior, providing the best solution in 13 instances. The use of a tabu list enhanced the search process’s efficiency by preventing redundant modifications. The Kempe chain LLH exhibited a tendency towards achieving better solutions.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"85 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The performance analysis of hyper-heuristics algorithms over examination timetabling problems\",\"authors\":\"A. Muklason, Yusnardo Tendio, Helena Angelita Depari, Muhammad Arif Nuriman, Gusti Agung Premananda\",\"doi\":\"10.11591/ijai.v13.i2.pp2155-2164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, uncapacitated exam timetabling is conducted manually, which can be time-consuming. Many studies aim to automate and optimize uncapacitated exam timetabling. However, pinpointing the most efficient algorithm is challenging since most studies assert that their algorithms surpass previous ones. To identify the optimal algorithm, this research evaluates the performance of four algorithms: Hill climbing (HC), simulated annealing (SA), great deluge (GD), and tabu search (TS) in addressing the exam timetabling problem. The Kempe chain operator’s influence on optimization solutions is also examined. A simple random method is employed to select the low-level heuristic (LLH). The Carter (Toronto) dataset served as the test material, with each algorithm undergoing 200,000 iterations for comparison. The results indicate that the TS algorithm is superior, providing the best solution in 13 instances. The use of a tabu list enhanced the search process’s efficiency by preventing redundant modifications. The Kempe chain LLH exhibited a tendency towards achieving better solutions.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"85 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp2155-2164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2155-2164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,无空位考试时间安排都是人工进行的,这可能会很耗时。许多研究旨在自动化和优化无空位考试时间安排。然而,确定最有效的算法具有挑战性,因为大多数研究都声称他们的算法超越了以前的算法。为了找出最佳算法,本研究评估了四种算法在解决考试时间安排问题中的性能:爬山算法(HC)、模拟退火算法(SA)、大洪水算法(GD)和塔布搜索算法(TS)。此外,还研究了 Kempe 链算子对优化解决方案的影响。在选择低级启发式(LLH)时,采用了一种简单的随机方法。卡特(多伦多)数据集作为测试材料,每种算法都进行了 200,000 次迭代比较。结果表明,TS 算法更胜一筹,在 13 个实例中提供了最佳解决方案。塔布列表的使用避免了多余的修改,从而提高了搜索过程的效率。Kempe 链 LLH 显示出获得更好解决方案的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The performance analysis of hyper-heuristics algorithms over examination timetabling problems
In general, uncapacitated exam timetabling is conducted manually, which can be time-consuming. Many studies aim to automate and optimize uncapacitated exam timetabling. However, pinpointing the most efficient algorithm is challenging since most studies assert that their algorithms surpass previous ones. To identify the optimal algorithm, this research evaluates the performance of four algorithms: Hill climbing (HC), simulated annealing (SA), great deluge (GD), and tabu search (TS) in addressing the exam timetabling problem. The Kempe chain operator’s influence on optimization solutions is also examined. A simple random method is employed to select the low-level heuristic (LLH). The Carter (Toronto) dataset served as the test material, with each algorithm undergoing 200,000 iterations for comparison. The results indicate that the TS algorithm is superior, providing the best solution in 13 instances. The use of a tabu list enhanced the search process’s efficiency by preventing redundant modifications. The Kempe chain LLH exhibited a tendency towards achieving better solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信