Orlando Iparraguirre-Villanueva, Josemaria Gonzales-Huaman, Jose Machuca-Solano, John Ruiz-Alvarado
{"title":"利用卷积神经网络改进工业安全设备检测","authors":"Orlando Iparraguirre-Villanueva, Josemaria Gonzales-Huaman, Jose Machuca-Solano, John Ruiz-Alvarado","doi":"10.11591/ijeecs.v34.i3.pp1935-1943","DOIUrl":null,"url":null,"abstract":"Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving industrial security device detection with convolutional neural networks\",\"authors\":\"Orlando Iparraguirre-Villanueva, Josemaria Gonzales-Huaman, Jose Machuca-Solano, John Ruiz-Alvarado\",\"doi\":\"10.11591/ijeecs.v34.i3.pp1935-1943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v34.i3.pp1935-1943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp1935-1943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Improving industrial security device detection with convolutional neural networks
Employee safety is paramount in the manufacturing industry to ensure their well-being and protection. Technological advancements, particularly convolutional neural networks (CNN), have significantly enhanced this safety aspect by facilitating object detection and recognition. This project aims to utilize CNN technology to detect personal protective equipment and implement a safety implement detection system. The CNN architecture with the YOLOv5x model was employed to train a dataset. Dataset videos were converted into frames, with resolution scale adjustments made during the data collection phase. Subsequently, the dataset was labeled, underwent data cleaning, and label and bounding box revisions. The results revealed significant metrics in safety equipment detection in industrial settings. Helmet precision reached 91%, with a recall of 74%. Goggles achieved 85% precision and an 87% recall. Mask absence recorded 92% precision and an 89% recall. The YOLOv5x model exhibited commendable performance, showcasing its robust ability to accurately locate and detect objects. In conclusion, the utilization of a CNN-based safety equipment detection system, such as YOLOv5x, has yielded substantial improvements in both speed and accuracy. These findings lay a solid foundation for future industrial security applications aimed at safeguarding workers, fostering responsible workplace behavior, and optimizing the utilization of information technology resources.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]