S. Alizadeh, Philip F. Edwards, E. Lockyer, M. W. Holmes, K. Power, D. Behm, D. Button
{"title":"上半身翼展试验中前臂前屈和上举姿势的神经力学差异","authors":"S. Alizadeh, Philip F. Edwards, E. Lockyer, M. W. Holmes, K. Power, D. Behm, D. Button","doi":"10.52082/jssm.2024.396","DOIUrl":null,"url":null,"abstract":"Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.3 ± 5.8 years) underwent bilateral assessments of handgrip strength in standing and seated positions, followed by pronated and supinated forward arm-cycling Wingate tests. Electromyography (EMG) was recorded from five upper-extremity muscles, including anterior deltoid, triceps brachii lateral head, biceps brachii, latissimus dorsi, and brachioradialis. Simultaneously, bilateral normal and propulsion forces were measured at the pedal-crank interface. Rate of perceived exertion (RPE), power output, and fatigue index were recorded post-test. The results showed that a pronated forearm position provided significantly (p < 0.05) higher normal and propulsion forces and triceps brachii muscle activation patterns during arm-cycling. No significant difference in RPE was observed between forearm positions (p = 0.17). A positive correlation was found between seated handgrip strength and peak power output during the Wingate test while pronated (dominant: p = 0.01, r = 0.55; non-dominant: p = 0.03, r = 0.49) and supinated (dominant: p = 0.03, r = 0.51; don-dominant: p = 0.04, r = 0.47). Fatigue changed the force and EMG profile during the Wingate test. In conclusion, this study enhances our understanding of forearm position's impact on upper-body Wingate tests. These findings have implications for optimizing training and performance strategies in individuals using arm-cycling for athletic enhancement and rehabilitation.","PeriodicalId":506848,"journal":{"name":"Journal of Sports Science and Medicine","volume":"93 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromechanical Differences between Pronated and Supinated Forearm Positions during Upper-Body Wingate Tests\",\"authors\":\"S. Alizadeh, Philip F. Edwards, E. Lockyer, M. W. Holmes, K. Power, D. Behm, D. Button\",\"doi\":\"10.52082/jssm.2024.396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.3 ± 5.8 years) underwent bilateral assessments of handgrip strength in standing and seated positions, followed by pronated and supinated forward arm-cycling Wingate tests. Electromyography (EMG) was recorded from five upper-extremity muscles, including anterior deltoid, triceps brachii lateral head, biceps brachii, latissimus dorsi, and brachioradialis. Simultaneously, bilateral normal and propulsion forces were measured at the pedal-crank interface. Rate of perceived exertion (RPE), power output, and fatigue index were recorded post-test. The results showed that a pronated forearm position provided significantly (p < 0.05) higher normal and propulsion forces and triceps brachii muscle activation patterns during arm-cycling. No significant difference in RPE was observed between forearm positions (p = 0.17). A positive correlation was found between seated handgrip strength and peak power output during the Wingate test while pronated (dominant: p = 0.01, r = 0.55; non-dominant: p = 0.03, r = 0.49) and supinated (dominant: p = 0.03, r = 0.51; don-dominant: p = 0.04, r = 0.47). Fatigue changed the force and EMG profile during the Wingate test. In conclusion, this study enhances our understanding of forearm position's impact on upper-body Wingate tests. These findings have implications for optimizing training and performance strategies in individuals using arm-cycling for athletic enhancement and rehabilitation.\",\"PeriodicalId\":506848,\"journal\":{\"name\":\"Journal of Sports Science and Medicine\",\"volume\":\"93 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sports Science and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52082/jssm.2024.396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Science and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52082/jssm.2024.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuromechanical Differences between Pronated and Supinated Forearm Positions during Upper-Body Wingate Tests
Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.3 ± 5.8 years) underwent bilateral assessments of handgrip strength in standing and seated positions, followed by pronated and supinated forward arm-cycling Wingate tests. Electromyography (EMG) was recorded from five upper-extremity muscles, including anterior deltoid, triceps brachii lateral head, biceps brachii, latissimus dorsi, and brachioradialis. Simultaneously, bilateral normal and propulsion forces were measured at the pedal-crank interface. Rate of perceived exertion (RPE), power output, and fatigue index were recorded post-test. The results showed that a pronated forearm position provided significantly (p < 0.05) higher normal and propulsion forces and triceps brachii muscle activation patterns during arm-cycling. No significant difference in RPE was observed between forearm positions (p = 0.17). A positive correlation was found between seated handgrip strength and peak power output during the Wingate test while pronated (dominant: p = 0.01, r = 0.55; non-dominant: p = 0.03, r = 0.49) and supinated (dominant: p = 0.03, r = 0.51; don-dominant: p = 0.04, r = 0.47). Fatigue changed the force and EMG profile during the Wingate test. In conclusion, this study enhances our understanding of forearm position's impact on upper-body Wingate tests. These findings have implications for optimizing training and performance strategies in individuals using arm-cycling for athletic enhancement and rehabilitation.