利用 U-Net 自动检测膝关节骨关节炎

Ahmed Salama, K. Rahouma, Fatma Elzahraa Mansour
{"title":"利用 U-Net 自动检测膝关节骨关节炎","authors":"Ahmed Salama, K. Rahouma, Fatma Elzahraa Mansour","doi":"10.11591/ijai.v13.i2.pp2122-2130","DOIUrl":null,"url":null,"abstract":"Knee osteoarthritis or OA is one of the most common diseases that can affect the elderly and overweight people. OA is occur as the result of wear and tear and progressive loss of articular cartilage. Kellgren-Lawrence system is a common method of classifying the severity of osteoarthritis depends on knee joint width. According to Kellgren-Lawrence, knee osteoarthritis is divided into five classes; one class represents a normal knee and the others represent four levels of knee osteoarthritis. In this work, we aim to automatically detect knee OA according to the Kellgren-Lawrence classification. The proposed system uses the U-Net architecture. The overall system yielded an accuracy of 96.3% during training.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"10 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knee osteoarthritis automatic detection using U-Net\",\"authors\":\"Ahmed Salama, K. Rahouma, Fatma Elzahraa Mansour\",\"doi\":\"10.11591/ijai.v13.i2.pp2122-2130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knee osteoarthritis or OA is one of the most common diseases that can affect the elderly and overweight people. OA is occur as the result of wear and tear and progressive loss of articular cartilage. Kellgren-Lawrence system is a common method of classifying the severity of osteoarthritis depends on knee joint width. According to Kellgren-Lawrence, knee osteoarthritis is divided into five classes; one class represents a normal knee and the others represent four levels of knee osteoarthritis. In this work, we aim to automatically detect knee OA according to the Kellgren-Lawrence classification. The proposed system uses the U-Net architecture. The overall system yielded an accuracy of 96.3% during training.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp2122-2130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2122-2130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膝关节骨关节炎(OA)是影响老年人和超重者的最常见疾病之一。OA 是关节软骨磨损和逐渐丧失的结果。凯尔格伦-劳伦斯系统是根据膝关节宽度来划分骨关节炎严重程度的常用方法。根据 Kellgren-Lawrence 系统,膝关节骨性关节炎可分为五级,其中一级代表正常膝关节,其他四级代表膝关节骨性关节炎。在这项工作中,我们的目标是根据 Kellgren-Lawrence 的分类自动检测膝关节 OA。该系统采用 U-Net 架构。在训练过程中,整个系统的准确率达到 96.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knee osteoarthritis automatic detection using U-Net
Knee osteoarthritis or OA is one of the most common diseases that can affect the elderly and overweight people. OA is occur as the result of wear and tear and progressive loss of articular cartilage. Kellgren-Lawrence system is a common method of classifying the severity of osteoarthritis depends on knee joint width. According to Kellgren-Lawrence, knee osteoarthritis is divided into five classes; one class represents a normal knee and the others represent four levels of knee osteoarthritis. In this work, we aim to automatically detect knee OA according to the Kellgren-Lawrence classification. The proposed system uses the U-Net architecture. The overall system yielded an accuracy of 96.3% during training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信