基于计算流体力学和离散元法的茶叶垂直吹悬位置数值耦合模拟

IF 1.5 3区 农林科学 Q2 HORTICULTURE
Xu Zhang, Xinyu Zhu, Kai Yu, Rongyang Wang
{"title":"基于计算流体力学和离散元法的茶叶垂直吹悬位置数值耦合模拟","authors":"Xu Zhang, Xinyu Zhu, Kai Yu, Rongyang Wang","doi":"10.21273/hortsci17758-24","DOIUrl":null,"url":null,"abstract":"To provide reference for the design of the air-suction tea sorting device, the coupled numerical simulation model was established by the coupling method of computational fluid dynamics (CFD) and discrete element method (DEM) with tea of different quality as test objects, and the model was verified experimentally. Regarding tea particles of different quality, when the test tea particle mass was 0.215, the test value was located in the simulation value with a minimum error of 9 mm, which an error rate of 3.33%, and maximum error of 19 mm, with an error rate of 7.03%. When the test tea particle mass was 0.145, the minimum error of the test value was 5 mm and the error rate was 1.54%, and the maximum error was 9 mm and the error rate was 3.33%. The verification results established the accuracy of the model. During the suspension test and simulation, tea particles were affected by the air flow field of the observation tube, and tea particles fluctuated. During suspension, tea particles were attached to the inner wall of the observation tube under the action of the air flow field. An in-depth study showed that the relationship between the different distances from the initial position of the particles during suspension and the simulation time was a peak function. The extreme function is used to fit the actual trajectory, and the fitting degree is good. The fitting degree of the particle closest to the initial position was 0.9455, and the fitting degree of the particle farthest from the initial position was 0.9981.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Coupling Simulation of the Vertical Blowing Suspension Position of Tea Leaves Based on Computational Fluid Dynamics and the Discrete Element Method\",\"authors\":\"Xu Zhang, Xinyu Zhu, Kai Yu, Rongyang Wang\",\"doi\":\"10.21273/hortsci17758-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To provide reference for the design of the air-suction tea sorting device, the coupled numerical simulation model was established by the coupling method of computational fluid dynamics (CFD) and discrete element method (DEM) with tea of different quality as test objects, and the model was verified experimentally. Regarding tea particles of different quality, when the test tea particle mass was 0.215, the test value was located in the simulation value with a minimum error of 9 mm, which an error rate of 3.33%, and maximum error of 19 mm, with an error rate of 7.03%. When the test tea particle mass was 0.145, the minimum error of the test value was 5 mm and the error rate was 1.54%, and the maximum error was 9 mm and the error rate was 3.33%. The verification results established the accuracy of the model. During the suspension test and simulation, tea particles were affected by the air flow field of the observation tube, and tea particles fluctuated. During suspension, tea particles were attached to the inner wall of the observation tube under the action of the air flow field. An in-depth study showed that the relationship between the different distances from the initial position of the particles during suspension and the simulation time was a peak function. The extreme function is used to fit the actual trajectory, and the fitting degree is good. The fitting degree of the particle closest to the initial position was 0.9455, and the fitting degree of the particle farthest from the initial position was 0.9981.\",\"PeriodicalId\":13140,\"journal\":{\"name\":\"Hortscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hortscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/hortsci17758-24\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hortscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci17758-24","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了给气吸式茶叶分选装置的设计提供参考,以不同品质的茶叶为试验对象,采用计算流体力学(CFD)和离散元法(DEM)的耦合方法,建立了耦合数值模拟模型,并对模型进行了实验验证。对于不同品质的茶叶颗粒,当测试茶叶颗粒质量为 0.215 时,测试值位于模拟值的最小误差为 9 mm,误差率为 3.33%,最大误差为 19 mm,误差率为 7.03%。当测试茶粒质量为 0.145 时,测试值的最小误差为 5 mm,误差率为 1.54%,最大误差为 9 mm,误差率为 3.33%。验证结果证明了模型的准确性。在悬浮试验和模拟过程中,茶叶颗粒受到观察管气流场的影响,茶叶颗粒出现波动。在悬浮过程中,茶叶颗粒在气流场的作用下附着在观察管的内壁上。深入研究表明,悬浮过程中颗粒从初始位置到模拟时间的不同距离之间的关系是一个峰值函数。利用极值函数对实际轨迹进行拟合,拟合度较好。离初始位置最近的粒子的拟合度为 0.9455,离初始位置最远的粒子的拟合度为 0.9981。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Coupling Simulation of the Vertical Blowing Suspension Position of Tea Leaves Based on Computational Fluid Dynamics and the Discrete Element Method
To provide reference for the design of the air-suction tea sorting device, the coupled numerical simulation model was established by the coupling method of computational fluid dynamics (CFD) and discrete element method (DEM) with tea of different quality as test objects, and the model was verified experimentally. Regarding tea particles of different quality, when the test tea particle mass was 0.215, the test value was located in the simulation value with a minimum error of 9 mm, which an error rate of 3.33%, and maximum error of 19 mm, with an error rate of 7.03%. When the test tea particle mass was 0.145, the minimum error of the test value was 5 mm and the error rate was 1.54%, and the maximum error was 9 mm and the error rate was 3.33%. The verification results established the accuracy of the model. During the suspension test and simulation, tea particles were affected by the air flow field of the observation tube, and tea particles fluctuated. During suspension, tea particles were attached to the inner wall of the observation tube under the action of the air flow field. An in-depth study showed that the relationship between the different distances from the initial position of the particles during suspension and the simulation time was a peak function. The extreme function is used to fit the actual trajectory, and the fitting degree is good. The fitting degree of the particle closest to the initial position was 0.9455, and the fitting degree of the particle farthest from the initial position was 0.9981.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hortscience
Hortscience 农林科学-园艺
CiteScore
3.00
自引率
10.50%
发文量
224
审稿时长
3 months
期刊介绍: HortScience publishes horticultural information of interest to a broad array of horticulturists. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industry developments and of significant research, education, or extension findings or methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信