Tedy Setiadi, Mohd Ridzwan Yaakub, Azuraliza Abu Bakar
{"title":"基于模块化优化的群落检测质量改进策略","authors":"Tedy Setiadi, Mohd Ridzwan Yaakub, Azuraliza Abu Bakar","doi":"10.11591/ijai.v13.i2.pp1794-1804","DOIUrl":null,"url":null,"abstract":"Community detection is a field of interest in social networks. Many new methods have emerged for community detection solution, however the modularity optimization method is the most prominent. Community detection based on modularity optimization (CDMO) has fundamental problems in the form of solution degeneration and resolution limits. From the two problems, the resolution limit is more concerned because it affects the resulting community's quality. During the last decade, many studies have attempted to address the problems, but so far they have been carried out partially, no one has thoroughly discussed efforts to improve the quality of CDMO. In this paper, we aim to investigate works in handling resolution limit and improving the quality of CDMO, along with their strengths and limitations. We derive six categories of strategies to improve the quality of CDMO, namely developing multi-resolution modularity, creating local modularity, creating modularity density, creating new metrics as an alternative to modularity, creating new quality metrics as a substitute for modularity, involving node attributes in determining community detection, and extending the single objective function into a multi-objective function. These strategies can be used as a guide in developing community detection methods. By considering network size, network type, and community distribution, we can choose the appropriate strategy in improving the quality of community detection.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for improving the quality of community detection based on modularity optimization\",\"authors\":\"Tedy Setiadi, Mohd Ridzwan Yaakub, Azuraliza Abu Bakar\",\"doi\":\"10.11591/ijai.v13.i2.pp1794-1804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community detection is a field of interest in social networks. Many new methods have emerged for community detection solution, however the modularity optimization method is the most prominent. Community detection based on modularity optimization (CDMO) has fundamental problems in the form of solution degeneration and resolution limits. From the two problems, the resolution limit is more concerned because it affects the resulting community's quality. During the last decade, many studies have attempted to address the problems, but so far they have been carried out partially, no one has thoroughly discussed efforts to improve the quality of CDMO. In this paper, we aim to investigate works in handling resolution limit and improving the quality of CDMO, along with their strengths and limitations. We derive six categories of strategies to improve the quality of CDMO, namely developing multi-resolution modularity, creating local modularity, creating modularity density, creating new metrics as an alternative to modularity, creating new quality metrics as a substitute for modularity, involving node attributes in determining community detection, and extending the single objective function into a multi-objective function. These strategies can be used as a guide in developing community detection methods. By considering network size, network type, and community distribution, we can choose the appropriate strategy in improving the quality of community detection.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp1794-1804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1794-1804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strategies for improving the quality of community detection based on modularity optimization
Community detection is a field of interest in social networks. Many new methods have emerged for community detection solution, however the modularity optimization method is the most prominent. Community detection based on modularity optimization (CDMO) has fundamental problems in the form of solution degeneration and resolution limits. From the two problems, the resolution limit is more concerned because it affects the resulting community's quality. During the last decade, many studies have attempted to address the problems, but so far they have been carried out partially, no one has thoroughly discussed efforts to improve the quality of CDMO. In this paper, we aim to investigate works in handling resolution limit and improving the quality of CDMO, along with their strengths and limitations. We derive six categories of strategies to improve the quality of CDMO, namely developing multi-resolution modularity, creating local modularity, creating modularity density, creating new metrics as an alternative to modularity, creating new quality metrics as a substitute for modularity, involving node attributes in determining community detection, and extending the single objective function into a multi-objective function. These strategies can be used as a guide in developing community detection methods. By considering network size, network type, and community distribution, we can choose the appropriate strategy in improving the quality of community detection.