Mohanavel Jothish Kumar, Suman Mishra, E. G. Reddy, M. Rajmohan, Subbiah Murugan, Narayanasamy Aswin Vignesh
{"title":"基于贝叶斯决策模型的物联网可靠路由形成","authors":"Mohanavel Jothish Kumar, Suman Mishra, E. G. Reddy, M. Rajmohan, Subbiah Murugan, Narayanasamy Aswin Vignesh","doi":"10.11591/ijeecs.v34.i3.pp1665-1673","DOIUrl":null,"url":null,"abstract":"Security provisioning has become an important issue in wireless multimedia networks because of their crucial task of supporting several services. This paper presents Bayesian decision model based reliable route formation in internet of things (BDMI). The main objective of the BDMI approach is to distinguish unreliable sensor nodes and transmit the data efficiently. Active and passive attack recognition methods identify unreliable node sensor nodes. Remaining energy, node degree, and packet transmission rate parameters to observe their node possibilities for recognizing the passive unreliable nodes. In active recognition, the base station (BS) confirms every sensor node identity, remaining energy, supportive node rate, node location, and link efficiency parameters to detect active unreliable sensor nodes. The Bayesian decision model (BDM) efficiently isolates an unreliable sensor node in the multimedia network. Simulation outcomes illustrate that the BDMI approach can efficiently enhance unreliable node detection and minimize the packet loss ratio in the network.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian decision model based reliable route formation in internet of things\",\"authors\":\"Mohanavel Jothish Kumar, Suman Mishra, E. G. Reddy, M. Rajmohan, Subbiah Murugan, Narayanasamy Aswin Vignesh\",\"doi\":\"10.11591/ijeecs.v34.i3.pp1665-1673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security provisioning has become an important issue in wireless multimedia networks because of their crucial task of supporting several services. This paper presents Bayesian decision model based reliable route formation in internet of things (BDMI). The main objective of the BDMI approach is to distinguish unreliable sensor nodes and transmit the data efficiently. Active and passive attack recognition methods identify unreliable node sensor nodes. Remaining energy, node degree, and packet transmission rate parameters to observe their node possibilities for recognizing the passive unreliable nodes. In active recognition, the base station (BS) confirms every sensor node identity, remaining energy, supportive node rate, node location, and link efficiency parameters to detect active unreliable sensor nodes. The Bayesian decision model (BDM) efficiently isolates an unreliable sensor node in the multimedia network. Simulation outcomes illustrate that the BDMI approach can efficiently enhance unreliable node detection and minimize the packet loss ratio in the network.\",\"PeriodicalId\":13480,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijeecs.v34.i3.pp1665-1673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp1665-1673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Bayesian decision model based reliable route formation in internet of things
Security provisioning has become an important issue in wireless multimedia networks because of their crucial task of supporting several services. This paper presents Bayesian decision model based reliable route formation in internet of things (BDMI). The main objective of the BDMI approach is to distinguish unreliable sensor nodes and transmit the data efficiently. Active and passive attack recognition methods identify unreliable node sensor nodes. Remaining energy, node degree, and packet transmission rate parameters to observe their node possibilities for recognizing the passive unreliable nodes. In active recognition, the base station (BS) confirms every sensor node identity, remaining energy, supportive node rate, node location, and link efficiency parameters to detect active unreliable sensor nodes. The Bayesian decision model (BDM) efficiently isolates an unreliable sensor node in the multimedia network. Simulation outcomes illustrate that the BDMI approach can efficiently enhance unreliable node detection and minimize the packet loss ratio in the network.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]