{"title":"基于 ResNet 的 Palembang songket 织物图案图像检测与使用 dropout 的数据增强技术","authors":"Ermatita Ermatita, Handrie Noprisson, Abdiansah Abdiansah","doi":"10.11591/eei.v13i3.6883","DOIUrl":null,"url":null,"abstract":"A good way to spread knowledge about Palembang songket woven cloth patterns is to use information technology, especially artificial intelligence technology. This study's main goal is to develop a ResNet model with dropout regularization methods and find out how dropout regularization affects the ResNet model for detecting Palembang songket fabric motif with more data. Data was collected in places like tujuh saudara songket, Zainal songket, songket PaSH, AMS songket, and batik, Ernawati songket, Nabilah collections, Ilham songket, and Marissa songket. We used eight class of data for this research. A dataset of 7,680 data for training, 960 data for validation, and 960 data for testing is a dataset that has been prepared to be implemented in experiments. In the final results, the experimental results for DResNet demonstrated that accuracy at the training stage was 92.16%, accuracy at the validation stage was 78.60%, and accuracy at the submission stage was 80.3%. The experimental results also show that dropouts are able to increase the accuracy of the ResNet model by adding +1.10% accuracy in the training process, adding +1.80% accuracy in the validation process, and adding +0.40% accuracy in the testing process.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout\",\"authors\":\"Ermatita Ermatita, Handrie Noprisson, Abdiansah Abdiansah\",\"doi\":\"10.11591/eei.v13i3.6883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A good way to spread knowledge about Palembang songket woven cloth patterns is to use information technology, especially artificial intelligence technology. This study's main goal is to develop a ResNet model with dropout regularization methods and find out how dropout regularization affects the ResNet model for detecting Palembang songket fabric motif with more data. Data was collected in places like tujuh saudara songket, Zainal songket, songket PaSH, AMS songket, and batik, Ernawati songket, Nabilah collections, Ilham songket, and Marissa songket. We used eight class of data for this research. A dataset of 7,680 data for training, 960 data for validation, and 960 data for testing is a dataset that has been prepared to be implemented in experiments. In the final results, the experimental results for DResNet demonstrated that accuracy at the training stage was 92.16%, accuracy at the validation stage was 78.60%, and accuracy at the submission stage was 80.3%. The experimental results also show that dropouts are able to increase the accuracy of the ResNet model by adding +1.10% accuracy in the training process, adding +1.80% accuracy in the validation process, and adding +0.40% accuracy in the testing process.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i3.6883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout
A good way to spread knowledge about Palembang songket woven cloth patterns is to use information technology, especially artificial intelligence technology. This study's main goal is to develop a ResNet model with dropout regularization methods and find out how dropout regularization affects the ResNet model for detecting Palembang songket fabric motif with more data. Data was collected in places like tujuh saudara songket, Zainal songket, songket PaSH, AMS songket, and batik, Ernawati songket, Nabilah collections, Ilham songket, and Marissa songket. We used eight class of data for this research. A dataset of 7,680 data for training, 960 data for validation, and 960 data for testing is a dataset that has been prepared to be implemented in experiments. In the final results, the experimental results for DResNet demonstrated that accuracy at the training stage was 92.16%, accuracy at the validation stage was 78.60%, and accuracy at the submission stage was 80.3%. The experimental results also show that dropouts are able to increase the accuracy of the ResNet model by adding +1.10% accuracy in the training process, adding +1.80% accuracy in the validation process, and adding +0.40% accuracy in the testing process.