量子流体力学中的整体性和涡旋结构

Michael S. Foskett, C. Tronci
{"title":"量子流体力学中的整体性和涡旋结构","authors":"Michael S. Foskett, C. Tronci","doi":"10.1017/9781009320733.006","DOIUrl":null,"url":null,"abstract":"In this paper we consider a new geometric approach to Madelung's quantum hydrodynamics (QHD) based on the theory of gauge connections. Unlike previous approaches, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrodinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Holonomy and vortex structures in quantum hydrodynamics\",\"authors\":\"Michael S. Foskett, C. Tronci\",\"doi\":\"10.1017/9781009320733.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a new geometric approach to Madelung's quantum hydrodynamics (QHD) based on the theory of gauge connections. Unlike previous approaches, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrodinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781009320733.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781009320733.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们考虑了一种基于轨距连接理论的马德龙量子流体力学(QHD)新几何方法。与以往的方法不同,我们的处理方法包括恒定曲率,从而赋予 QHD 固有的非零整体性。在流体力学背景下,这导致流体速度不再受限于非旋转,而是允许涡旋丝解决方案。在利用 Rasetti-Regge 方法将薛定谔方程与涡旋丝动力学耦合之后,我们将后者视为玻恩-奥本海默分子动力学中的几何相位源。同样,我们考虑了电磁场中自旋粒子运动的保利方程,并利用其基本流体动力学图景,将涡旋动力学纳入其中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holonomy and vortex structures in quantum hydrodynamics
In this paper we consider a new geometric approach to Madelung's quantum hydrodynamics (QHD) based on the theory of gauge connections. Unlike previous approaches, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti-Regge method to couple the Schrodinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born-Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信