准无穷映射定点约束非光滑凸优化的并行计算近似法

K. Shimizu, K. Hishinuma, H. Iiduka
{"title":"准无穷映射定点约束非光滑凸优化的并行计算近似法","authors":"K. Shimizu, K. Hishinuma, H. Iiduka","doi":"10.23952/ASVAO.2.2020.1.01","DOIUrl":null,"url":null,"abstract":". We present a parallel computing proximal method for solving the problem of minimizing the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. We also provide a convergence analysis of the method for constant and diminishing step sizes under certain assumptions as well as a convergence-rate analysis for a diminishing step size. Numerical comparisons show that the performance of the algorithm is comparable with existing subgradient methods.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"118 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parallel computing proximal method for nonsmooth convex optimization with fixed point constraints of quasi-nonexpansive mappings\",\"authors\":\"K. Shimizu, K. Hishinuma, H. Iiduka\",\"doi\":\"10.23952/ASVAO.2.2020.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We present a parallel computing proximal method for solving the problem of minimizing the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. We also provide a convergence analysis of the method for constant and diminishing step sizes under certain assumptions as well as a convergence-rate analysis for a diminishing step size. Numerical comparisons show that the performance of the algorithm is comparable with existing subgradient methods.\",\"PeriodicalId\":362333,\"journal\":{\"name\":\"Applied Set-Valued Analysis and Optimization\",\"volume\":\"118 32\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Set-Valued Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23952/ASVAO.2.2020.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/ASVAO.2.2020.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

.我们提出了一种并行计算近似方法,用于求解实希尔伯特空间中准无穷映射的定点集交点上凸函数之和最小化问题。我们还提供了该方法在某些假设条件下对恒定步长和递减步长的收敛分析,以及对递减步长的收敛速率分析。数值比较表明,该算法的性能可与现有的子梯度方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel computing proximal method for nonsmooth convex optimization with fixed point constraints of quasi-nonexpansive mappings
. We present a parallel computing proximal method for solving the problem of minimizing the sum of convex functions over the intersection of fixed point sets of quasi-nonexpansive mappings in a real Hilbert space. We also provide a convergence analysis of the method for constant and diminishing step sizes under certain assumptions as well as a convergence-rate analysis for a diminishing step size. Numerical comparisons show that the performance of the algorithm is comparable with existing subgradient methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信