利用机器学习算法对潜在献血者进行分类

Merinda Lestandy, Lailis Syafa’ah, Amrul Faruq
{"title":"利用机器学习算法对潜在献血者进行分类","authors":"Merinda Lestandy, Lailis Syafa’ah, Amrul Faruq","doi":"10.14710/JTSISKOM.2020.13619","DOIUrl":null,"url":null,"abstract":"Blood donation is the process of taking blood from someone used for blood transfusions. Blood type, sex, age, blood pressure, and hemoglobin are blood donor criteria that must be met and processed manually to classify blood donor eligibility. The manual process resulted in an irregular blood supply because blood donor candidates did not meet the criteria. This study implements machine learning algorithms includes kNN, naïve Bayes, and neural network methods to determine the eligibility of blood donors. This study used 600 training data divided into two classes, namely potential and non-potential donors. The test results show that the accuracy of the neural network is 84.3 %, higher than kNN and naïve Bayes, respectively of 75 % and 84.17 %. It indicates that the neural network method outperforms comparing with kNN and naïve Bayes.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"127 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of potential blood donors using machine learning algorithms approach\",\"authors\":\"Merinda Lestandy, Lailis Syafa’ah, Amrul Faruq\",\"doi\":\"10.14710/JTSISKOM.2020.13619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blood donation is the process of taking blood from someone used for blood transfusions. Blood type, sex, age, blood pressure, and hemoglobin are blood donor criteria that must be met and processed manually to classify blood donor eligibility. The manual process resulted in an irregular blood supply because blood donor candidates did not meet the criteria. This study implements machine learning algorithms includes kNN, naïve Bayes, and neural network methods to determine the eligibility of blood donors. This study used 600 training data divided into two classes, namely potential and non-potential donors. The test results show that the accuracy of the neural network is 84.3 %, higher than kNN and naïve Bayes, respectively of 75 % and 84.17 %. It indicates that the neural network method outperforms comparing with kNN and naïve Bayes.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"127 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/JTSISKOM.2020.13619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2020.13619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

献血是指从某人身上抽取血液用于输血的过程。血型、性别、年龄、血压和血红蛋白是献血者必须满足的标准,并通过人工处理来划分献血者资格。由于献血者候选人不符合标准,人工处理过程导致血液供应不正常。本研究采用机器学习算法,包括 kNN、天真贝叶斯和神经网络方法来确定献血者的资格。本研究使用了 600 个训练数据,分为两类,即潜在献血者和非潜在献血者。测试结果表明,神经网络的准确率为 84.3%,分别高于 kNN 和 naïve Bayes 的 75% 和 84.17%。这表明神经网络方法优于 kNN 和天真贝叶斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of potential blood donors using machine learning algorithms approach
Blood donation is the process of taking blood from someone used for blood transfusions. Blood type, sex, age, blood pressure, and hemoglobin are blood donor criteria that must be met and processed manually to classify blood donor eligibility. The manual process resulted in an irregular blood supply because blood donor candidates did not meet the criteria. This study implements machine learning algorithms includes kNN, naïve Bayes, and neural network methods to determine the eligibility of blood donors. This study used 600 training data divided into two classes, namely potential and non-potential donors. The test results show that the accuracy of the neural network is 84.3 %, higher than kNN and naïve Bayes, respectively of 75 % and 84.17 %. It indicates that the neural network method outperforms comparing with kNN and naïve Bayes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信