O. Lozynskyy, Y. Marushchak, A. Lozynskyy, B. Kopchak, L. Kasha
{"title":"频率稳定准则在分析以 j1/3 为基础形成的特征多项式动态系统中的应用","authors":"O. Lozynskyy, Y. Marushchak, A. Lozynskyy, B. Kopchak, L. Kasha","doi":"10.23939/jcpee2020.01.011","DOIUrl":null,"url":null,"abstract":"This paper considers the stability of dynamical systems described by differential equations with fractional derivatives. In contrast to a number of works, where the differential equation describing the system may have a set of different values of fractional derivatives, and the characteristic polynomial is formed on the basis of the least common multiple for the denominators of these indicators, this article proposes forming such a polynomial in a specific j¹/³ basis and studying the stability of systems with such fractional description based on the resulting rotation angles of Hn(jl/mω) vector at a frequency change from zero to infinity. This technique is similar to the investigation of system stability by frequency criteria used for a similar problem in describing the system by differential equations in integer derivatives. The application of characteristic polynomials formed in the j¹/³ basis for the description of the processes in dynamic systems and the analysis of the stability of such systems on the basis of the frequency criterion are the essence of the scientific novelty of this paper. The article contains the following sections: problem statement, work purpose, presentation of the research material, conclusions, list of references.","PeriodicalId":325908,"journal":{"name":"Computational Problems of Electrical Engineering","volume":"118 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of frequency stability criterion for analysis of dynamic systems with characteristic polynomials formed in j1/3 basis\",\"authors\":\"O. Lozynskyy, Y. Marushchak, A. Lozynskyy, B. Kopchak, L. Kasha\",\"doi\":\"10.23939/jcpee2020.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the stability of dynamical systems described by differential equations with fractional derivatives. In contrast to a number of works, where the differential equation describing the system may have a set of different values of fractional derivatives, and the characteristic polynomial is formed on the basis of the least common multiple for the denominators of these indicators, this article proposes forming such a polynomial in a specific j¹/³ basis and studying the stability of systems with such fractional description based on the resulting rotation angles of Hn(jl/mω) vector at a frequency change from zero to infinity. This technique is similar to the investigation of system stability by frequency criteria used for a similar problem in describing the system by differential equations in integer derivatives. The application of characteristic polynomials formed in the j¹/³ basis for the description of the processes in dynamic systems and the analysis of the stability of such systems on the basis of the frequency criterion are the essence of the scientific novelty of this paper. The article contains the following sections: problem statement, work purpose, presentation of the research material, conclusions, list of references.\",\"PeriodicalId\":325908,\"journal\":{\"name\":\"Computational Problems of Electrical Engineering\",\"volume\":\"118 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Problems of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/jcpee2020.01.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Problems of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jcpee2020.01.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of frequency stability criterion for analysis of dynamic systems with characteristic polynomials formed in j1/3 basis
This paper considers the stability of dynamical systems described by differential equations with fractional derivatives. In contrast to a number of works, where the differential equation describing the system may have a set of different values of fractional derivatives, and the characteristic polynomial is formed on the basis of the least common multiple for the denominators of these indicators, this article proposes forming such a polynomial in a specific j¹/³ basis and studying the stability of systems with such fractional description based on the resulting rotation angles of Hn(jl/mω) vector at a frequency change from zero to infinity. This technique is similar to the investigation of system stability by frequency criteria used for a similar problem in describing the system by differential equations in integer derivatives. The application of characteristic polynomials formed in the j¹/³ basis for the description of the processes in dynamic systems and the analysis of the stability of such systems on the basis of the frequency criterion are the essence of the scientific novelty of this paper. The article contains the following sections: problem statement, work purpose, presentation of the research material, conclusions, list of references.