扭曲 $L$ 函数的次凸边界

IF 0.5 Q3 MATHEMATICS
Qingfeng Sun, Hui Wang
{"title":"扭曲 $L$ 函数的次凸边界","authors":"Qingfeng Sun, Hui Wang","doi":"10.7169/facm/1940","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{q}>2$ be a prime number, $\\chi$ a primitive Dirichlet character modulo $\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\otimes \\chi)\\ll \\mathfrak{q}^{1/2-1/12+\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\varepsilon$. The main input is a modifying trivial delta method developed in [1].","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A subconvex bound for twisted $L$-functions\",\"authors\":\"Qingfeng Sun, Hui Wang\",\"doi\":\"10.7169/facm/1940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{q}>2$ be a prime number, $\\\\chi$ a primitive Dirichlet character modulo $\\\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\\\otimes \\\\chi)\\\\ll \\\\mathfrak{q}^{1/2-1/12+\\\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\\\varepsilon$. The main input is a modifying trivial delta method developed in [1].\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

让 $\mathfrak{q}>2$ 是一个素数,$\chi$ 是一个原始的迪里夏特特征 modulo $\mathfrak{q}$,$f$ 是一个原始的全形余弦形式或一个水平为 $\mathfrak{q}$ 的 Hecke-Maass 余弦形式,并且是微不足道的新余弦。我们证明了亚凸边界 $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ 其中隐含常数只取决于 $f$ 和 $\varepsilon$ 的阿基米德参数。主要输入是[1]中开发的修正三阶三角法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A subconvex bound for twisted $L$-functions
Let $\mathfrak{q}>2$ be a prime number, $\chi$ a primitive Dirichlet character modulo $\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\varepsilon$. The main input is a modifying trivial delta method developed in [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信