{"title":"扭曲 $L$ 函数的次凸边界","authors":"Qingfeng Sun, Hui Wang","doi":"10.7169/facm/1940","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{q}>2$ be a prime number, $\\chi$ a primitive Dirichlet character modulo $\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\otimes \\chi)\\ll \\mathfrak{q}^{1/2-1/12+\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\varepsilon$. The main input is a modifying trivial delta method developed in [1].","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A subconvex bound for twisted $L$-functions\",\"authors\":\"Qingfeng Sun, Hui Wang\",\"doi\":\"10.7169/facm/1940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{q}>2$ be a prime number, $\\\\chi$ a primitive Dirichlet character modulo $\\\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\\\otimes \\\\chi)\\\\ll \\\\mathfrak{q}^{1/2-1/12+\\\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\\\varepsilon$. The main input is a modifying trivial delta method developed in [1].\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $\mathfrak{q}>2$ be a prime number, $\chi$ a primitive Dirichlet character modulo $\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\varepsilon$. The main input is a modifying trivial delta method developed in [1].