带缩放的对数最小模型程序中对数丰度对数典范对的有限性

Pub Date : 2020-05-25 DOI:10.1307/mmj/20226207
K. Hashizume
{"title":"带缩放的对数最小模型程序中对数丰度对数典范对的有限性","authors":"K. Hashizume","doi":"10.1307/mmj/20226207","DOIUrl":null,"url":null,"abstract":"We study relations between property of being log abundant for lc pairs and termination of log MMP with scaling. We prove that any log MMP with scaling of an ample divisor starting with a projective dlt pair contains only finitely many log abundant dlt pairs. In addition, we discuss conjectures on log abundant dlt pairs which imply existence of good minimal models for projective klt pairs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Finiteness of log Abundant log Canonical Pairs in log Minimal Model Program with Scaling\",\"authors\":\"K. Hashizume\",\"doi\":\"10.1307/mmj/20226207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study relations between property of being log abundant for lc pairs and termination of log MMP with scaling. We prove that any log MMP with scaling of an ample divisor starting with a projective dlt pair contains only finitely many log abundant dlt pairs. In addition, we discuss conjectures on log abundant dlt pairs which imply existence of good minimal models for projective klt pairs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20226207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20226207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了 lc 对的对数丰满性质与带缩放的 log MMP 终止之间的关系。我们证明,从投影 dlt 对开始的任何对数充裕 dlt 对的对数 MMP 与缩放都只包含有限个对数充裕 dlt 对。此外,我们还讨论了关于对数丰满 dlt 对的猜想,这些猜想意味着存在投影 klt 对的良好最小模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finiteness of log Abundant log Canonical Pairs in log Minimal Model Program with Scaling
We study relations between property of being log abundant for lc pairs and termination of log MMP with scaling. We prove that any log MMP with scaling of an ample divisor starting with a projective dlt pair contains only finitely many log abundant dlt pairs. In addition, we discuss conjectures on log abundant dlt pairs which imply existence of good minimal models for projective klt pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信