扩展和改进锥形二梳齿

Giuliano Basso
{"title":"扩展和改进锥形二梳齿","authors":"Giuliano Basso","doi":"10.4171/LEM/1043","DOIUrl":null,"url":null,"abstract":"We prove that for every reversible conical bicombing $\\sigma$ on a metric space $X$, there exists a conical bicombing on the injective hull of $X$ that extends $\\sigma$. We also establish a Descombes-Lang type result stating that every proper metric space with a conical bicombing admits a consistent bicombing satisfying certain convexity conditions.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Extending and improving conical bicombings\",\"authors\":\"Giuliano Basso\",\"doi\":\"10.4171/LEM/1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for every reversible conical bicombing $\\\\sigma$ on a metric space $X$, there exists a conical bicombing on the injective hull of $X$ that extends $\\\\sigma$. We also establish a Descombes-Lang type result stating that every proper metric space with a conical bicombing admits a consistent bicombing satisfying certain convexity conditions.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/1043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/1043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们证明,对于度量空间 $X$ 上的每一个可逆圆锥二叉$\sigma$,都存在一个在 $X$ 的注入体上扩展 $\sigma$ 的圆锥二叉。我们还建立了一个 Descombes-Lang 类型的结果,指出每一个具有圆锥双梳理的适当度量空间都有一个满足某些凸性条件的一致双梳理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending and improving conical bicombings
We prove that for every reversible conical bicombing $\sigma$ on a metric space $X$, there exists a conical bicombing on the injective hull of $X$ that extends $\sigma$. We also establish a Descombes-Lang type result stating that every proper metric space with a conical bicombing admits a consistent bicombing satisfying certain convexity conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信