Upasana Sharma, Rajnish Kumar, Avijit Mazumder, Salahuddin, Neelima Kukreti, Rashmi Mishra, M. V. N. L. Chaitanya
{"title":"基于底物的 1,3,4-恶二唑合成策略和生物活性:综述。","authors":"Upasana Sharma, Rajnish Kumar, Avijit Mazumder, Salahuddin, Neelima Kukreti, Rashmi Mishra, M. V. N. L. Chaitanya","doi":"10.1111/cbdd.14552","DOIUrl":null,"url":null,"abstract":"<p>The five-membered 1,3,4-oxadiazole heterocyclic ring has received considerable attention because of its unique bio-isosteric properties and an unusually wide spectrum of biological activities. After a century since 1,3,4-oxadiazole was discovered, its uncommon potential attracted medicinal chemist's attention, leading to the discovery of a few presently accessible drugs containing 1,3,4-oxadiazole units, and a large number of patents have been granted on research related to 1,3,4-oxadiazole. It is worth noting that interest in 1,3,4-oxadiazoles' biological applications has doubled in the last few years. Herein, this review presents a comprehensive overview of the recent achievements in the synthesis of 1,3,4-oxadiazole-based compounds and highlights the major advances in their biological applications in the last 10 years, as well as brief remarks on prospects for further development. We hope that researchers across the scientific streams will benefit from the presented review articles for designing their work related to 1,3,4-oxadiazoles.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate-based synthetic strategies and biological activities of 1,3,4-oxadiazole: A review\",\"authors\":\"Upasana Sharma, Rajnish Kumar, Avijit Mazumder, Salahuddin, Neelima Kukreti, Rashmi Mishra, M. V. N. L. Chaitanya\",\"doi\":\"10.1111/cbdd.14552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The five-membered 1,3,4-oxadiazole heterocyclic ring has received considerable attention because of its unique bio-isosteric properties and an unusually wide spectrum of biological activities. After a century since 1,3,4-oxadiazole was discovered, its uncommon potential attracted medicinal chemist's attention, leading to the discovery of a few presently accessible drugs containing 1,3,4-oxadiazole units, and a large number of patents have been granted on research related to 1,3,4-oxadiazole. It is worth noting that interest in 1,3,4-oxadiazoles' biological applications has doubled in the last few years. Herein, this review presents a comprehensive overview of the recent achievements in the synthesis of 1,3,4-oxadiazole-based compounds and highlights the major advances in their biological applications in the last 10 years, as well as brief remarks on prospects for further development. We hope that researchers across the scientific streams will benefit from the presented review articles for designing their work related to 1,3,4-oxadiazoles.</p>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14552\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14552","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Substrate-based synthetic strategies and biological activities of 1,3,4-oxadiazole: A review
The five-membered 1,3,4-oxadiazole heterocyclic ring has received considerable attention because of its unique bio-isosteric properties and an unusually wide spectrum of biological activities. After a century since 1,3,4-oxadiazole was discovered, its uncommon potential attracted medicinal chemist's attention, leading to the discovery of a few presently accessible drugs containing 1,3,4-oxadiazole units, and a large number of patents have been granted on research related to 1,3,4-oxadiazole. It is worth noting that interest in 1,3,4-oxadiazoles' biological applications has doubled in the last few years. Herein, this review presents a comprehensive overview of the recent achievements in the synthesis of 1,3,4-oxadiazole-based compounds and highlights the major advances in their biological applications in the last 10 years, as well as brief remarks on prospects for further development. We hope that researchers across the scientific streams will benefit from the presented review articles for designing their work related to 1,3,4-oxadiazoles.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.