{"title":"两全其美:利用基于集合的子群体建模,将 \"一个模型适用于所有群体 \"和 \"特定群体模型 \"方法结合起来。","authors":"Purity Mugambi, Stephanie Carreiro","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Subpopulation models have become of increasing interest in prediction of clinical outcomes because they promise to perform better for underrepresented patient subgroups. However, the personalization benefits gained from these models tradeoff their statistical power, and can be impractical when the subpopulation's sample size is small. We hypothesize that a hierarchical model in which population information is integrated into subpopulation models would preserve the personalization benefits and offset the loss of power. In this work, we integrate ideas from ensemble modeling, personalization, and hierarchical modeling and build ensemble-based subpopulation models in which specialization relies on whole group samples. This approach significantly improves the precision of the positive class, especially for the underrepresented subgroups, with minimal cost to the recall. It consistently outperforms one model for all and one model for each subgroup approaches, especially in the presence of a high class-imbalance, for subgroups with at least 380 training samples.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141864/pdf/","citationCount":"0","resultStr":"{\"title\":\"Best of Both Worlds: Bridging One Model for All and Group-Specific Model Approaches using Ensemble-based Subpopulation Modeling.\",\"authors\":\"Purity Mugambi, Stephanie Carreiro\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subpopulation models have become of increasing interest in prediction of clinical outcomes because they promise to perform better for underrepresented patient subgroups. However, the personalization benefits gained from these models tradeoff their statistical power, and can be impractical when the subpopulation's sample size is small. We hypothesize that a hierarchical model in which population information is integrated into subpopulation models would preserve the personalization benefits and offset the loss of power. In this work, we integrate ideas from ensemble modeling, personalization, and hierarchical modeling and build ensemble-based subpopulation models in which specialization relies on whole group samples. This approach significantly improves the precision of the positive class, especially for the underrepresented subgroups, with minimal cost to the recall. It consistently outperforms one model for all and one model for each subgroup approaches, especially in the presence of a high class-imbalance, for subgroups with at least 380 training samples.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Best of Both Worlds: Bridging One Model for All and Group-Specific Model Approaches using Ensemble-based Subpopulation Modeling.
Subpopulation models have become of increasing interest in prediction of clinical outcomes because they promise to perform better for underrepresented patient subgroups. However, the personalization benefits gained from these models tradeoff their statistical power, and can be impractical when the subpopulation's sample size is small. We hypothesize that a hierarchical model in which population information is integrated into subpopulation models would preserve the personalization benefits and offset the loss of power. In this work, we integrate ideas from ensemble modeling, personalization, and hierarchical modeling and build ensemble-based subpopulation models in which specialization relies on whole group samples. This approach significantly improves the precision of the positive class, especially for the underrepresented subgroups, with minimal cost to the recall. It consistently outperforms one model for all and one model for each subgroup approaches, especially in the presence of a high class-imbalance, for subgroups with at least 380 training samples.