{"title":"Myostatin 基因在调节家禽性状中的作用,具有潜在的工业应用价值。","authors":"Joonbum Lee, Dong-Hwan Kim, Kichoon Lee","doi":"10.1186/s40104-024-01040-5","DOIUrl":null,"url":null,"abstract":"<p><p>The myostatin (MSTN) gene is considered a potential genetic marker to improve economically important traits in livestock, since the discovery of its function using the MSTN knockout mice. The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations. In poultry species, myogenesis in cell culture was regulated by modulation of the MSTN gene. Also, different expression levels of the MSTN gene in poultry models with different muscle mass have been reported, indicating the conserved myogenic function of the MSTN gene between mammalian and avian species. Recent advances of CRISPR/Cas9-mediated genome editing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly demonstrate its anti-myogenic function and further investigate other potential functions in poultry species. This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms. Furthermore, the genome-edited poultry models targeting the MSTN gene are reviewed to integrate diverse effects of the MSTN gene on different traits of poultry species.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"82"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145818/pdf/","citationCount":"0","resultStr":"{\"title\":\"Myostatin gene role in regulating traits of poultry species for potential industrial applications.\",\"authors\":\"Joonbum Lee, Dong-Hwan Kim, Kichoon Lee\",\"doi\":\"10.1186/s40104-024-01040-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The myostatin (MSTN) gene is considered a potential genetic marker to improve economically important traits in livestock, since the discovery of its function using the MSTN knockout mice. The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations. In poultry species, myogenesis in cell culture was regulated by modulation of the MSTN gene. Also, different expression levels of the MSTN gene in poultry models with different muscle mass have been reported, indicating the conserved myogenic function of the MSTN gene between mammalian and avian species. Recent advances of CRISPR/Cas9-mediated genome editing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly demonstrate its anti-myogenic function and further investigate other potential functions in poultry species. This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms. Furthermore, the genome-edited poultry models targeting the MSTN gene are reviewed to integrate diverse effects of the MSTN gene on different traits of poultry species.</p>\",\"PeriodicalId\":64067,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"15 1\",\"pages\":\"82\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-024-01040-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-024-01040-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Myostatin gene role in regulating traits of poultry species for potential industrial applications.
The myostatin (MSTN) gene is considered a potential genetic marker to improve economically important traits in livestock, since the discovery of its function using the MSTN knockout mice. The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations. In poultry species, myogenesis in cell culture was regulated by modulation of the MSTN gene. Also, different expression levels of the MSTN gene in poultry models with different muscle mass have been reported, indicating the conserved myogenic function of the MSTN gene between mammalian and avian species. Recent advances of CRISPR/Cas9-mediated genome editing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly demonstrate its anti-myogenic function and further investigate other potential functions in poultry species. This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms. Furthermore, the genome-edited poultry models targeting the MSTN gene are reviewed to integrate diverse effects of the MSTN gene on different traits of poultry species.