生物学轴:一种新颖的基于轴的网络嵌入范例,用于破译细胞的功能机制。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-05-23 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae075
Sergio Doria-Belenguer, Alexandros Xenos, Gaia Ceddia, Noël Malod-Dognin, Nataša Pržulj
{"title":"生物学轴:一种新颖的基于轴的网络嵌入范例,用于破译细胞的功能机制。","authors":"Sergio Doria-Belenguer, Alexandros Xenos, Gaia Ceddia, Noël Malod-Dognin, Nataša Pržulj","doi":"10.1093/bioadv/vbae075","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Common approaches for deciphering biological networks involve network embedding algorithms. These approaches strictly focus on clustering the genes' embedding vectors and interpreting such clusters to reveal the hidden information of the networks. However, the difficulty in interpreting the genes' clusters and the limitations of the functional annotations' resources hinder the identification of the currently unknown cell's functioning mechanisms. We propose a new approach that shifts this functional exploration from the embedding vectors of genes in space to the axes of the space itself. Our methodology better disentangles biological information from the embedding space than the classic gene-centric approach. Moreover, it uncovers new data-driven functional interactions that are unregistered in the functional ontologies, but biologically coherent. Furthermore, we exploit these interactions to define new higher-level annotations that we term Axes-Specific Functional Annotations and validate them through literature curation. Finally, we leverage our methodology to discover evolutionary connections between cellular functions and the evolution of species.</p><p><strong>Availability and implementation: </strong>Data and source code can be accessed at https://gitlab.bsc.es/sdoria/axes-of-biology.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142626/pdf/","citationCount":"0","resultStr":"{\"title\":\"The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell.\",\"authors\":\"Sergio Doria-Belenguer, Alexandros Xenos, Gaia Ceddia, Noël Malod-Dognin, Nataša Pržulj\",\"doi\":\"10.1093/bioadv/vbae075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Common approaches for deciphering biological networks involve network embedding algorithms. These approaches strictly focus on clustering the genes' embedding vectors and interpreting such clusters to reveal the hidden information of the networks. However, the difficulty in interpreting the genes' clusters and the limitations of the functional annotations' resources hinder the identification of the currently unknown cell's functioning mechanisms. We propose a new approach that shifts this functional exploration from the embedding vectors of genes in space to the axes of the space itself. Our methodology better disentangles biological information from the embedding space than the classic gene-centric approach. Moreover, it uncovers new data-driven functional interactions that are unregistered in the functional ontologies, but biologically coherent. Furthermore, we exploit these interactions to define new higher-level annotations that we term Axes-Specific Functional Annotations and validate them through literature curation. Finally, we leverage our methodology to discover evolutionary connections between cellular functions and the evolution of species.</p><p><strong>Availability and implementation: </strong>Data and source code can be accessed at https://gitlab.bsc.es/sdoria/axes-of-biology.git.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:解密生物网络的常见方法涉及网络嵌入算法。这些方法主要对基因的嵌入向量进行聚类,并通过解读这些聚类来揭示网络的隐藏信息。然而,解读基因簇的难度和功能注释资源的局限性阻碍了对目前未知细胞功能机制的识别。我们提出了一种新方法,将这种功能探索从基因在空间中的嵌入向量转向空间本身的轴。与传统的以基因为中心的方法相比,我们的方法能更好地将生物信息从嵌入空间中分离出来。此外,它还发现了新的数据驱动的功能相互作用,这些相互作用在功能本体中没有登记,但在生物学上是一致的。此外,我们还利用这些相互作用来定义新的高级注释,我们称之为轴特异性功能注释,并通过文献整理对其进行验证。最后,我们利用我们的方法发现细胞功能与物种进化之间的进化联系:数据和源代码可通过 https://gitlab.bsc.es/sdoria/axes-of-biology.git 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell.

Summary: Common approaches for deciphering biological networks involve network embedding algorithms. These approaches strictly focus on clustering the genes' embedding vectors and interpreting such clusters to reveal the hidden information of the networks. However, the difficulty in interpreting the genes' clusters and the limitations of the functional annotations' resources hinder the identification of the currently unknown cell's functioning mechanisms. We propose a new approach that shifts this functional exploration from the embedding vectors of genes in space to the axes of the space itself. Our methodology better disentangles biological information from the embedding space than the classic gene-centric approach. Moreover, it uncovers new data-driven functional interactions that are unregistered in the functional ontologies, but biologically coherent. Furthermore, we exploit these interactions to define new higher-level annotations that we term Axes-Specific Functional Annotations and validate them through literature curation. Finally, we leverage our methodology to discover evolutionary connections between cellular functions and the evolution of species.

Availability and implementation: Data and source code can be accessed at https://gitlab.bsc.es/sdoria/axes-of-biology.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信