预测吸烟事件,进行及时干预。

Hang Yu, Michael Kotlyar, Paul Thuras, Sheena Dufresne, Serguei Vs Pakhomov
{"title":"预测吸烟事件,进行及时干预。","authors":"Hang Yu, Michael Kotlyar, Paul Thuras, Sheena Dufresne, Serguei Vs Pakhomov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Consumer-grade heart rate (HR) sensors are widely used for tracking physical and mental health status. We explore the feasibility of using Polar H10 electrocardiogram (ECG) sensor to detect and predict cigarette smoking events in naturalistic settings with several machine learning approaches. We have collected and analyzed data for 28 participants observed over a two-week period. We found that using bidirectional long short-term memory (BiLSTM) with ECG-derived and GPS location input features yielded the highest mean accuracy of 69% for smoking event detection. For predicting smoking events, the highest accuracy of 67% was achieved using the fine-tuned LSTM approach. We also found a significant correlation between accuracy and the number of smoking events available from each participant. Our findings indicate that both detection and prediction of smoking events are feasible but require an individualized approach to training the models, particularly for prediction.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141818/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards Predicting Smoking Events for Just-in-time Interventions.\",\"authors\":\"Hang Yu, Michael Kotlyar, Paul Thuras, Sheena Dufresne, Serguei Vs Pakhomov\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Consumer-grade heart rate (HR) sensors are widely used for tracking physical and mental health status. We explore the feasibility of using Polar H10 electrocardiogram (ECG) sensor to detect and predict cigarette smoking events in naturalistic settings with several machine learning approaches. We have collected and analyzed data for 28 participants observed over a two-week period. We found that using bidirectional long short-term memory (BiLSTM) with ECG-derived and GPS location input features yielded the highest mean accuracy of 69% for smoking event detection. For predicting smoking events, the highest accuracy of 67% was achieved using the fine-tuned LSTM approach. We also found a significant correlation between accuracy and the number of smoking events available from each participant. Our findings indicate that both detection and prediction of smoking events are feasible but require an individualized approach to training the models, particularly for prediction.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

消费级心率(HR)传感器被广泛用于跟踪身体和精神健康状况。我们利用几种机器学习方法探索了使用 Polar H10 心电图(ECG)传感器在自然环境中检测和预测吸烟事件的可行性。我们收集并分析了 28 名参与者两周内的观察数据。我们发现,使用双向长短期记忆(BiLSTM)以及心电图衍生和 GPS 位置输入特征检测吸烟事件的平均准确率最高,达到 69%。在预测吸烟事件方面,微调 LSTM 方法的准确率最高,达到 67%。我们还发现,准确率与每位参与者的吸烟事件数量之间存在明显的相关性。我们的研究结果表明,吸烟事件的检测和预测都是可行的,但需要采用个性化的方法来训练模型,尤其是预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Predicting Smoking Events for Just-in-time Interventions.

Consumer-grade heart rate (HR) sensors are widely used for tracking physical and mental health status. We explore the feasibility of using Polar H10 electrocardiogram (ECG) sensor to detect and predict cigarette smoking events in naturalistic settings with several machine learning approaches. We have collected and analyzed data for 28 participants observed over a two-week period. We found that using bidirectional long short-term memory (BiLSTM) with ECG-derived and GPS location input features yielded the highest mean accuracy of 69% for smoking event detection. For predicting smoking events, the highest accuracy of 67% was achieved using the fine-tuned LSTM approach. We also found a significant correlation between accuracy and the number of smoking events available from each participant. Our findings indicate that both detection and prediction of smoking events are feasible but require an individualized approach to training the models, particularly for prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信