Tanmoy Paul, Omiya Hassan, Syed K Islam, Abu S M Mosa
{"title":"利用卷积神经网络从原始心电图和 SpO2 信号实时检测阻塞性睡眠呼吸暂停。","authors":"Tanmoy Paul, Omiya Hassan, Syed K Islam, Abu S M Mosa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Obstructive sleep apnea is a sleep disorder that is linked with many health complications and severe form of apnea can even be lethal. Overnight polysomnography is the gold standard for diagnosing apnea, which is expensive, time-consuming, and requires manual analysis by a sleep expert. Recently, there have been numerous studies demonstrating the application of artificial intelligence to detect apnea in real time. But the majority of these studies apply data pre-processing and feature extraction techniques resulting in a longer inference time that makes the real-time detection system inefficient. This study proposes a single convolutional neural network architecture that can automatically extract spatial features and detect apnea from both electrocardiogram (ECG) and blood-oxygen saturation (SpO<sub>2</sub>) signals. Using segments of 10s, the network classified apnea with an accuracy of 94.2% and 96% for ECG and SpO<sub>2</sub> respectively. Moreover, the overall performance of both models was consistent with an AUC score of 0.99.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-Time Obstructive Sleep Apnea Detection from Raw ECG and SpO<sub>2</sub> Signal Using Convolutional Neural Network.\",\"authors\":\"Tanmoy Paul, Omiya Hassan, Syed K Islam, Abu S M Mosa\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obstructive sleep apnea is a sleep disorder that is linked with many health complications and severe form of apnea can even be lethal. Overnight polysomnography is the gold standard for diagnosing apnea, which is expensive, time-consuming, and requires manual analysis by a sleep expert. Recently, there have been numerous studies demonstrating the application of artificial intelligence to detect apnea in real time. But the majority of these studies apply data pre-processing and feature extraction techniques resulting in a longer inference time that makes the real-time detection system inefficient. This study proposes a single convolutional neural network architecture that can automatically extract spatial features and detect apnea from both electrocardiogram (ECG) and blood-oxygen saturation (SpO<sub>2</sub>) signals. Using segments of 10s, the network classified apnea with an accuracy of 94.2% and 96% for ECG and SpO<sub>2</sub> respectively. Moreover, the overall performance of both models was consistent with an AUC score of 0.99.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Obstructive Sleep Apnea Detection from Raw ECG and SpO2 Signal Using Convolutional Neural Network.
Obstructive sleep apnea is a sleep disorder that is linked with many health complications and severe form of apnea can even be lethal. Overnight polysomnography is the gold standard for diagnosing apnea, which is expensive, time-consuming, and requires manual analysis by a sleep expert. Recently, there have been numerous studies demonstrating the application of artificial intelligence to detect apnea in real time. But the majority of these studies apply data pre-processing and feature extraction techniques resulting in a longer inference time that makes the real-time detection system inefficient. This study proposes a single convolutional neural network architecture that can automatically extract spatial features and detect apnea from both electrocardiogram (ECG) and blood-oxygen saturation (SpO2) signals. Using segments of 10s, the network classified apnea with an accuracy of 94.2% and 96% for ECG and SpO2 respectively. Moreover, the overall performance of both models was consistent with an AUC score of 0.99.