{"title":"电子病历中的病理生理学特征可在数据集时空转移的情况下维持模型性能。","authors":"Raphael Brosula, Conor K Corbin, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Access to real-world data streams like electronic medical records (EMRs) has accelerated the development of supervised machine learning (ML) models for clinical applications. However, few studies investigate the differential impact of particular features in the EMR on model performance under temporal dataset shift. To explain how features in the EMR impact models over time, this study aggregates features into <i>feature groups</i> by their source (e.g. medication orders, diagnosis codes and lab results) and <i>feature categories</i> based on their reflection of patient pathophysiology or healthcare processes. We adapt Shapley values to explain feature groups' and feature categories' marginal contribution to initial and sustained model performance. We investigate three standard clinical prediction tasks and find that while feature contributions to initial performance differ across tasks, pathophysiological features help mitigate temporal discrimination deterioration. These results provide interpretable insights on how specific feature groups contribute to model performance and robustness to temporal dataset shift.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pathophysiological Features in Electronic Medical Records Sustain Model Performance under Temporal Dataset Shift.\",\"authors\":\"Raphael Brosula, Conor K Corbin, Jonathan H Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Access to real-world data streams like electronic medical records (EMRs) has accelerated the development of supervised machine learning (ML) models for clinical applications. However, few studies investigate the differential impact of particular features in the EMR on model performance under temporal dataset shift. To explain how features in the EMR impact models over time, this study aggregates features into <i>feature groups</i> by their source (e.g. medication orders, diagnosis codes and lab results) and <i>feature categories</i> based on their reflection of patient pathophysiology or healthcare processes. We adapt Shapley values to explain feature groups' and feature categories' marginal contribution to initial and sustained model performance. We investigate three standard clinical prediction tasks and find that while feature contributions to initial performance differ across tasks, pathophysiological features help mitigate temporal discrimination deterioration. These results provide interpretable insights on how specific feature groups contribute to model performance and robustness to temporal dataset shift.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Pathophysiological Features in Electronic Medical Records Sustain Model Performance under Temporal Dataset Shift.
Access to real-world data streams like electronic medical records (EMRs) has accelerated the development of supervised machine learning (ML) models for clinical applications. However, few studies investigate the differential impact of particular features in the EMR on model performance under temporal dataset shift. To explain how features in the EMR impact models over time, this study aggregates features into feature groups by their source (e.g. medication orders, diagnosis codes and lab results) and feature categories based on their reflection of patient pathophysiology or healthcare processes. We adapt Shapley values to explain feature groups' and feature categories' marginal contribution to initial and sustained model performance. We investigate three standard clinical prediction tasks and find that while feature contributions to initial performance differ across tasks, pathophysiological features help mitigate temporal discrimination deterioration. These results provide interpretable insights on how specific feature groups contribute to model performance and robustness to temporal dataset shift.