{"title":"利用选择性滤波器库自适应黎曼特征,实现与会话无关的主体自适应心理意象 BCI。","authors":"Jayasandhya Meenakshinathan, Vinay Gupta, Tharun Kumar Reddy, Laxmidhar Behera, Tushar Sandhan","doi":"10.1007/s11517-024-03137-5","DOIUrl":null,"url":null,"abstract":"<p><p>The brain-computer interfaces (BCIs) facilitate the users to exploit information encoded in neural signals, specifically electroencephalogram (EEG), to control devices and for neural rehabilitation. Mental imagery (MI)-driven BCI predicts the user's pre-meditated mental objectives, which could be deployed as command signals. This paper presents a novel learning-based framework for classifying MI tasks using EEG-based BCI. In particular, our work focuses on the variation in inter-session data and the extraction of multi-spectral user-tailored features for robust performance. Thus, the goal is to create a calibration-free subject-adaptive learning framework for various mental imagery tasks not restricted to motor imagery alone. In this regard, critical spectral bands and the best temporal window are first selected from the EEG training trials of the subject based on the Riemannian user learning distance metric (Dscore) that checks for distinct and stable patterns. The filtered covariance matrices of the EEG trials in each spectral band are then transformed towards a reference covariance matrix using the Riemannian transfer learning, enabling the different sessions to be comparable. The evaluation of our proposed Selective Time-window and Multi-scale Filter-Bank with Adaptive Riemannian (STFB-AR) features on four public datasets, including disabled subjects, showed around 15% and 8% improvement in mean accuracy over baseline and fixed filter-bank models, respectively.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3293-3310"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Session-independent subject-adaptive mental imagery BCI using selective filter-bank adaptive Riemannian features.\",\"authors\":\"Jayasandhya Meenakshinathan, Vinay Gupta, Tharun Kumar Reddy, Laxmidhar Behera, Tushar Sandhan\",\"doi\":\"10.1007/s11517-024-03137-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain-computer interfaces (BCIs) facilitate the users to exploit information encoded in neural signals, specifically electroencephalogram (EEG), to control devices and for neural rehabilitation. Mental imagery (MI)-driven BCI predicts the user's pre-meditated mental objectives, which could be deployed as command signals. This paper presents a novel learning-based framework for classifying MI tasks using EEG-based BCI. In particular, our work focuses on the variation in inter-session data and the extraction of multi-spectral user-tailored features for robust performance. Thus, the goal is to create a calibration-free subject-adaptive learning framework for various mental imagery tasks not restricted to motor imagery alone. In this regard, critical spectral bands and the best temporal window are first selected from the EEG training trials of the subject based on the Riemannian user learning distance metric (Dscore) that checks for distinct and stable patterns. The filtered covariance matrices of the EEG trials in each spectral band are then transformed towards a reference covariance matrix using the Riemannian transfer learning, enabling the different sessions to be comparable. The evaluation of our proposed Selective Time-window and Multi-scale Filter-Bank with Adaptive Riemannian (STFB-AR) features on four public datasets, including disabled subjects, showed around 15% and 8% improvement in mean accuracy over baseline and fixed filter-bank models, respectively.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3293-3310\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03137-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03137-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The brain-computer interfaces (BCIs) facilitate the users to exploit information encoded in neural signals, specifically electroencephalogram (EEG), to control devices and for neural rehabilitation. Mental imagery (MI)-driven BCI predicts the user's pre-meditated mental objectives, which could be deployed as command signals. This paper presents a novel learning-based framework for classifying MI tasks using EEG-based BCI. In particular, our work focuses on the variation in inter-session data and the extraction of multi-spectral user-tailored features for robust performance. Thus, the goal is to create a calibration-free subject-adaptive learning framework for various mental imagery tasks not restricted to motor imagery alone. In this regard, critical spectral bands and the best temporal window are first selected from the EEG training trials of the subject based on the Riemannian user learning distance metric (Dscore) that checks for distinct and stable patterns. The filtered covariance matrices of the EEG trials in each spectral band are then transformed towards a reference covariance matrix using the Riemannian transfer learning, enabling the different sessions to be comparable. The evaluation of our proposed Selective Time-window and Multi-scale Filter-Bank with Adaptive Riemannian (STFB-AR) features on four public datasets, including disabled subjects, showed around 15% and 8% improvement in mean accuracy over baseline and fixed filter-bank models, respectively.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).