FERI:基于多任务的公平实现算法,应用于公平器官移植。

Can Li, Dejian Lai, Xiaoqian Jiang, Kai Zhang
{"title":"FERI:基于多任务的公平实现算法,应用于公平器官移植。","authors":"Can Li, Dejian Lai, Xiaoqian Jiang, Kai Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Liver transplantation often faces fairness challenges across subgroups defined by sensitive attributes such as age group, gender, and race/ethnicity. Machine learning models for outcome prediction can introduce additional biases. Therefore, we introduce <b>F</b>airness through the <b>E</b>quitable <b>R</b>ate of <b>I</b>mprovement in Multitask Learning (FERI) algorithm for fair predictions of graft failure risk in liver transplant patients. FERI constrains subgroup loss by balancing learning rates and preventing subgroup dominance in the training process. Our results show that FERI maintained high predictive accuracy with AUROC and AUPRC comparable to baseline models. More importantly, FERI demonstrated an ability to improve fairness without sacrificing accuracy. Specifically, for the gender, FERI reduced the demographic parity disparity by 71.74%, and for the age group, it decreased the equalized odds disparity by 40.46%. Therefore, the FERI algorithm advanced fairness-aware predictive modeling in healthcare and provides an invaluable tool for equitable healthcare systems.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141863/pdf/","citationCount":"0","resultStr":"{\"title\":\"FERI: A Multitask-based Fairness Achieving Algorithm with Applications to Fair Organ Transplantation.\",\"authors\":\"Can Li, Dejian Lai, Xiaoqian Jiang, Kai Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver transplantation often faces fairness challenges across subgroups defined by sensitive attributes such as age group, gender, and race/ethnicity. Machine learning models for outcome prediction can introduce additional biases. Therefore, we introduce <b>F</b>airness through the <b>E</b>quitable <b>R</b>ate of <b>I</b>mprovement in Multitask Learning (FERI) algorithm for fair predictions of graft failure risk in liver transplant patients. FERI constrains subgroup loss by balancing learning rates and preventing subgroup dominance in the training process. Our results show that FERI maintained high predictive accuracy with AUROC and AUPRC comparable to baseline models. More importantly, FERI demonstrated an ability to improve fairness without sacrificing accuracy. Specifically, for the gender, FERI reduced the demographic parity disparity by 71.74%, and for the age group, it decreased the equalized odds disparity by 40.46%. Therefore, the FERI algorithm advanced fairness-aware predictive modeling in healthcare and provides an invaluable tool for equitable healthcare systems.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝脏移植往往面临着由年龄组、性别和种族/民族等敏感属性所定义的亚组的公平性挑战。用于结果预测的机器学习模型可能会引入额外的偏差。因此,我们引入了多任务学习中的公平改进率(FERI)算法,用于公平预测肝移植患者的移植物失败风险。FERI 通过平衡学习率和防止训练过程中的亚组优势来限制亚组损失。我们的研究结果表明,FERI 保持了较高的预测准确率,其 AUROC 和 AUPRC 与基线模型相当。更重要的是,FERI 能够在不牺牲准确性的情况下提高公平性。具体来说,在性别方面,FERI 将人口均等差距缩小了 71.74%,在年龄组方面,将均等几率差距缩小了 40.46%。因此,FERI 算法推进了医疗保健领域的公平感知预测建模,为公平医疗保健系统提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FERI: A Multitask-based Fairness Achieving Algorithm with Applications to Fair Organ Transplantation.

Liver transplantation often faces fairness challenges across subgroups defined by sensitive attributes such as age group, gender, and race/ethnicity. Machine learning models for outcome prediction can introduce additional biases. Therefore, we introduce Fairness through the Equitable Rate of Improvement in Multitask Learning (FERI) algorithm for fair predictions of graft failure risk in liver transplant patients. FERI constrains subgroup loss by balancing learning rates and preventing subgroup dominance in the training process. Our results show that FERI maintained high predictive accuracy with AUROC and AUPRC comparable to baseline models. More importantly, FERI demonstrated an ability to improve fairness without sacrificing accuracy. Specifically, for the gender, FERI reduced the demographic parity disparity by 71.74%, and for the age group, it decreased the equalized odds disparity by 40.46%. Therefore, the FERI algorithm advanced fairness-aware predictive modeling in healthcare and provides an invaluable tool for equitable healthcare systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信