T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš
{"title":"纠正相关性荟萃分析中的偏差。","authors":"T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš","doi":"10.1037/met0000662","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate that all conventional meta-analyses of correlation coefficients are biased, explain why, and offer solutions. Because the standard errors of the correlation coefficients depend on the size of the coefficient, inverse-variance weighted averages will be biased even under ideal meta-analytical conditions (i.e., absence of publication bias, <i>p</i>-hacking, or other biases). Transformation to Fisher's <i>z</i> often greatly reduces these biases but still does not mitigate them entirely. Although all are small-sample biases (<i>n</i> < 200), they will often have practical consequences in psychology where the typical sample size of correlational studies is 86. We offer two solutions: the well-known Fisher's z-transformation and new small-sample adjustment of Fisher's that renders any remaining bias scientifically trivial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correcting bias in the meta-analysis of correlations.\",\"authors\":\"T D Stanley, Hristos Doucouliagos, Maximilian Maier, František Bartoš\",\"doi\":\"10.1037/met0000662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate that all conventional meta-analyses of correlation coefficients are biased, explain why, and offer solutions. Because the standard errors of the correlation coefficients depend on the size of the coefficient, inverse-variance weighted averages will be biased even under ideal meta-analytical conditions (i.e., absence of publication bias, <i>p</i>-hacking, or other biases). Transformation to Fisher's <i>z</i> often greatly reduces these biases but still does not mitigate them entirely. Although all are small-sample biases (<i>n</i> < 200), they will often have practical consequences in psychology where the typical sample size of correlational studies is 86. We offer two solutions: the well-known Fisher's z-transformation and new small-sample adjustment of Fisher's that renders any remaining bias scientifically trivial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000662\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000662","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了所有传统的相关系数荟萃分析都是有偏差的,解释了原因并提出了解决方案。由于相关系数的标准误差取决于系数的大小,因此即使在理想的元分析条件下(即不存在发表偏差、P-黑客或其他偏差),反方差加权平均值也会存在偏差。转换为费舍尔 z 值通常会大大减少这些偏差,但仍不能完全缓解这些偏差。虽然所有这些都是小样本偏差(n < 200),但它们往往会对心理学产生实际影响,因为相关研究的典型样本量是 86。我们提供了两种解决方案:一种是众所周知的费雪 Z 变换,另一种是费雪的新小样本调整,这两种方法都能使剩余的偏差在科学上变得微不足道。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
Correcting bias in the meta-analysis of correlations.
We demonstrate that all conventional meta-analyses of correlation coefficients are biased, explain why, and offer solutions. Because the standard errors of the correlation coefficients depend on the size of the coefficient, inverse-variance weighted averages will be biased even under ideal meta-analytical conditions (i.e., absence of publication bias, p-hacking, or other biases). Transformation to Fisher's z often greatly reduces these biases but still does not mitigate them entirely. Although all are small-sample biases (n < 200), they will often have practical consequences in psychology where the typical sample size of correlational studies is 86. We offer two solutions: the well-known Fisher's z-transformation and new small-sample adjustment of Fisher's that renders any remaining bias scientifically trivial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.