利用机器学习从脑电图检测颈动脉内膜切除术中的脑缺血现象

Amir I Mina, Jessi U Espino, Allison M Bradley, Parthasarathy D Thirumala, Kayhan Batmanghelich, Shyam Visweswaran
{"title":"利用机器学习从脑电图检测颈动脉内膜切除术中的脑缺血现象","authors":"Amir I Mina, Jessi U Espino, Allison M Bradley, Parthasarathy D Thirumala, Kayhan Batmanghelich, Shyam Visweswaran","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detecting Cerebral Ischemia From Electroencephalography During Carotid Endarterectomy Using Machine Learning.\",\"authors\":\"Amir I Mina, Jessi U Espino, Allison M Bradley, Parthasarathy D Thirumala, Kayhan Batmanghelich, Shyam Visweswaran\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在手术过程中通过脑电图(EEG)监测大脑神经元活动可发现缺血,这是中风的前兆。然而,目前基于神经生理学家的监测容易出错。在本研究中,我们评估了机器学习(ML)对缺血检测的效率和准确性。我们在一个包含 802 名术中缺血标签的患者数据集上训练了有监督的 ML 模型,并在一个包含 30 名患者的独立验证数据集上对这些模型进行了评估,该数据集包含来自五位神经电生理学家的精炼标签。我们的结果显示,神经电生理学家之间存在中度到实质性的一致性,科恩卡帕值介于 0.59 和 0.74 之间。神经生理学家的灵敏度为 58-93%,特异度为 83-96%,而 ML 模型的灵敏度为 63-89%,特异度为 85-96%。随机森林 (RF)、LightGBM (LGBM) 和 XGBoost RF 的接收器工作特征曲线下面积 (AUROC) 值为 0.92-0.93,精度-召回曲线下面积 (AUPRC) 值为 0.79-0.83。ML 具有改善术中监测、提高患者安全性和降低成本的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Cerebral Ischemia From Electroencephalography During Carotid Endarterectomy Using Machine Learning.

Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信