{"title":"以实用研究设计为导向的化合物转录组图谱归一化程序研究。","authors":"Tadahaya Mizuno, Hiroyuki Kusuhara","doi":"10.2131/jts.49.249","DOIUrl":null,"url":null,"abstract":"<p><p>The transcriptome profile is a representative phenotype-based descriptor of compounds, widely acknowledged for its ability to effectively capture compound effects. However, the presence of batch differences is inevitable. Despite the existence of sophisticated statistical methods, many of them presume a substantial sample size. How should we design a transcriptome analysis to obtain robust compound profiles, particularly in the context of small datasets frequently encountered in practical scenarios? This study addresses this question by investigating the normalization procedures for transcriptome profiles, focusing on the baseline distribution employed in deriving biological responses as profiles. Firstly, we investigated two large GeneChip datasets, comparing the impact of different normalization procedures. Through an evaluation of the similarity between response profiles of biological replicates within each dataset and the similarity between response profiles of the same compound across datasets, we revealed that the baseline distribution defined by all samples within each batch under batch-corrected condition is a good choice for large datasets. Subsequently, we conducted a simulation to explore the influence of the number of control samples on the robustness of response profiles across datasets. The results offer insights into determining the suitable quantity of control samples for diminutive datasets. It is crucial to acknowledge that these conclusions stem from constrained datasets. Nevertheless, we believe that this study enhances our understanding of how to effectively leverage transcriptome profiles of compounds and promotes the accumulation of essential knowledge for the practical application of such profiles.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"49 6","pages":"249-259"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of normalization procedures for transcriptome profiles of compounds oriented toward practical study design.\",\"authors\":\"Tadahaya Mizuno, Hiroyuki Kusuhara\",\"doi\":\"10.2131/jts.49.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transcriptome profile is a representative phenotype-based descriptor of compounds, widely acknowledged for its ability to effectively capture compound effects. However, the presence of batch differences is inevitable. Despite the existence of sophisticated statistical methods, many of them presume a substantial sample size. How should we design a transcriptome analysis to obtain robust compound profiles, particularly in the context of small datasets frequently encountered in practical scenarios? This study addresses this question by investigating the normalization procedures for transcriptome profiles, focusing on the baseline distribution employed in deriving biological responses as profiles. Firstly, we investigated two large GeneChip datasets, comparing the impact of different normalization procedures. Through an evaluation of the similarity between response profiles of biological replicates within each dataset and the similarity between response profiles of the same compound across datasets, we revealed that the baseline distribution defined by all samples within each batch under batch-corrected condition is a good choice for large datasets. Subsequently, we conducted a simulation to explore the influence of the number of control samples on the robustness of response profiles across datasets. The results offer insights into determining the suitable quantity of control samples for diminutive datasets. It is crucial to acknowledge that these conclusions stem from constrained datasets. Nevertheless, we believe that this study enhances our understanding of how to effectively leverage transcriptome profiles of compounds and promotes the accumulation of essential knowledge for the practical application of such profiles.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"49 6\",\"pages\":\"249-259\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.49.249\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.49.249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Investigation of normalization procedures for transcriptome profiles of compounds oriented toward practical study design.
The transcriptome profile is a representative phenotype-based descriptor of compounds, widely acknowledged for its ability to effectively capture compound effects. However, the presence of batch differences is inevitable. Despite the existence of sophisticated statistical methods, many of them presume a substantial sample size. How should we design a transcriptome analysis to obtain robust compound profiles, particularly in the context of small datasets frequently encountered in practical scenarios? This study addresses this question by investigating the normalization procedures for transcriptome profiles, focusing on the baseline distribution employed in deriving biological responses as profiles. Firstly, we investigated two large GeneChip datasets, comparing the impact of different normalization procedures. Through an evaluation of the similarity between response profiles of biological replicates within each dataset and the similarity between response profiles of the same compound across datasets, we revealed that the baseline distribution defined by all samples within each batch under batch-corrected condition is a good choice for large datasets. Subsequently, we conducted a simulation to explore the influence of the number of control samples on the robustness of response profiles across datasets. The results offer insights into determining the suitable quantity of control samples for diminutive datasets. It is crucial to acknowledge that these conclusions stem from constrained datasets. Nevertheless, we believe that this study enhances our understanding of how to effectively leverage transcriptome profiles of compounds and promotes the accumulation of essential knowledge for the practical application of such profiles.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.