{"title":"通过芬顿反应鉴定血红蛋白降解唑吡坦的尸检产物。","authors":"Yoshikazu Yamagishi, Sayaka Nagasawa, Hirotaro Iwase, Yasumitsu Ogra","doi":"10.2131/jts.49.261","DOIUrl":null,"url":null,"abstract":"<p><p>Zolpidem, N,N-dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide, is a hypnotic agent widely used in clinical practice but is detected in many clinical cases of fatal intoxication and suicide. In forensic toxicology, the precise determination of zolpidem concentration in blood is a must to provide concrete evidence of death by zolpidem poisoning. However, the concentrations of zolpidem in blood at autopsy often differ from those at the estimated time of death. In the present study, we found that zolpidem was degraded by hemoglobin (Hb) via the Fenton reaction at various temperatures. The mechanism underlying zolpidem degradation involved the oxidation of its linker moiety. The MS and MS/MS spectra obtained by liquid chromatography quadrupole-Orbitrap mass spectrometry (LC-Q-Orbitrap-MS) showed the formation of 2-hydroxy-N,N-dimethyl-2-(6-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (2-OH ZOL) in Hb/H<sub>2</sub>O<sub>2</sub> solution incubated with zolpidem and in the blood of several individuals who died from ingestion of zolpidem. These results suggest that 2-OH ZOL is the post-mortem product of zolpidem degradation by Hb via the Fenton reaction.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"49 6","pages":"261-268"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of post-mortem product of zolpidem degradation by hemoglobin via the Fenton reaction.\",\"authors\":\"Yoshikazu Yamagishi, Sayaka Nagasawa, Hirotaro Iwase, Yasumitsu Ogra\",\"doi\":\"10.2131/jts.49.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zolpidem, N,N-dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide, is a hypnotic agent widely used in clinical practice but is detected in many clinical cases of fatal intoxication and suicide. In forensic toxicology, the precise determination of zolpidem concentration in blood is a must to provide concrete evidence of death by zolpidem poisoning. However, the concentrations of zolpidem in blood at autopsy often differ from those at the estimated time of death. In the present study, we found that zolpidem was degraded by hemoglobin (Hb) via the Fenton reaction at various temperatures. The mechanism underlying zolpidem degradation involved the oxidation of its linker moiety. The MS and MS/MS spectra obtained by liquid chromatography quadrupole-Orbitrap mass spectrometry (LC-Q-Orbitrap-MS) showed the formation of 2-hydroxy-N,N-dimethyl-2-(6-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (2-OH ZOL) in Hb/H<sub>2</sub>O<sub>2</sub> solution incubated with zolpidem and in the blood of several individuals who died from ingestion of zolpidem. These results suggest that 2-OH ZOL is the post-mortem product of zolpidem degradation by Hb via the Fenton reaction.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"49 6\",\"pages\":\"261-268\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.49.261\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.49.261","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Identification of post-mortem product of zolpidem degradation by hemoglobin via the Fenton reaction.
Zolpidem, N,N-dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide, is a hypnotic agent widely used in clinical practice but is detected in many clinical cases of fatal intoxication and suicide. In forensic toxicology, the precise determination of zolpidem concentration in blood is a must to provide concrete evidence of death by zolpidem poisoning. However, the concentrations of zolpidem in blood at autopsy often differ from those at the estimated time of death. In the present study, we found that zolpidem was degraded by hemoglobin (Hb) via the Fenton reaction at various temperatures. The mechanism underlying zolpidem degradation involved the oxidation of its linker moiety. The MS and MS/MS spectra obtained by liquid chromatography quadrupole-Orbitrap mass spectrometry (LC-Q-Orbitrap-MS) showed the formation of 2-hydroxy-N,N-dimethyl-2-(6-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (2-OH ZOL) in Hb/H2O2 solution incubated with zolpidem and in the blood of several individuals who died from ingestion of zolpidem. These results suggest that 2-OH ZOL is the post-mortem product of zolpidem degradation by Hb via the Fenton reaction.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.