Chloe Cadieux, Pawel Brzozowski, Renan J R Fernandes, Martine E McGregor, Radovan Zdero, Christopher S Bailey, Stewart D McLachlin, Parham Rasoulinejad
{"title":"用半刚性结构顶开长胸椎稳定器可能对预防近端交界处后凸具有有利的生物力学效应:生物力学比较。","authors":"Chloe Cadieux, Pawel Brzozowski, Renan J R Fernandes, Martine E McGregor, Radovan Zdero, Christopher S Bailey, Stewart D McLachlin, Parham Rasoulinejad","doi":"10.1177/21925682241259695","DOIUrl":null,"url":null,"abstract":"<p><p>Study DesignIn-vitro cadaveric biomechanical study.ObjectivesLong posterior spinal fusion is a standard treatment for adult spinal deformity. However, these rigid constructs are known to alter motion and stress to the adjacent non-instrumented vertebrae, increasing the risk of proximal junctional kyphosis (PJK). This study aimed to biomechanically compare a standard rigid construct vs constructs \"topped off\" with a semi-rigid construct. By understanding semi-rigid constructs' effect on motion and overall construct stiffness, surgeons and researchers could better optimize fusion constructs to potentially decrease the risk of PJK and the need for revision surgery.MethodsNine human cadaveric spines (T1-T12) underwent non-destructive biomechanical range of motion tests in pure bending or torsion and were instrumented with an all-pedicle-screw (APS) construct from T6-T9. The specimens were sequentially instrumented with semi-rigid constructs at T5: (i) APS plus sublaminar bands; (ii) APS plus supralaminar hooks; (iii) APS plus transverse process hooks; and (iv) APS plus short pedicle screws.ResultsAPS plus transverse process hooks had a range of motion (ie, relative angle) for T4-T5 and T5-T6, as well as an overall mechanical stiffness for T1-T12, that was more favourable, as it reduced motion at adjacent levels without a stark increase in stiffness. Moreover, APS plus transverse process hooks had the most linear change for range of motion across the entire T3-T7 range.ConclusionsPresent findings suggest that APS plus transverse process hooks has a favourable biomechanical effect that may reduce PJK for long spinal fusions compared to the other constructs examined.</p>","PeriodicalId":12680,"journal":{"name":"Global Spine Journal","volume":" ","pages":"1685-1694"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571626/pdf/","citationCount":"0","resultStr":"{\"title\":\"Topping-Off a Long Thoracic Stabilization With Semi-Rigid Constructs May Have Favorable Biomechanical Effects to Prevent Proximal Junctional Kyphosis: A Biomechanical Comparison.\",\"authors\":\"Chloe Cadieux, Pawel Brzozowski, Renan J R Fernandes, Martine E McGregor, Radovan Zdero, Christopher S Bailey, Stewart D McLachlin, Parham Rasoulinejad\",\"doi\":\"10.1177/21925682241259695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Study DesignIn-vitro cadaveric biomechanical study.ObjectivesLong posterior spinal fusion is a standard treatment for adult spinal deformity. However, these rigid constructs are known to alter motion and stress to the adjacent non-instrumented vertebrae, increasing the risk of proximal junctional kyphosis (PJK). This study aimed to biomechanically compare a standard rigid construct vs constructs \\\"topped off\\\" with a semi-rigid construct. By understanding semi-rigid constructs' effect on motion and overall construct stiffness, surgeons and researchers could better optimize fusion constructs to potentially decrease the risk of PJK and the need for revision surgery.MethodsNine human cadaveric spines (T1-T12) underwent non-destructive biomechanical range of motion tests in pure bending or torsion and were instrumented with an all-pedicle-screw (APS) construct from T6-T9. The specimens were sequentially instrumented with semi-rigid constructs at T5: (i) APS plus sublaminar bands; (ii) APS plus supralaminar hooks; (iii) APS plus transverse process hooks; and (iv) APS plus short pedicle screws.ResultsAPS plus transverse process hooks had a range of motion (ie, relative angle) for T4-T5 and T5-T6, as well as an overall mechanical stiffness for T1-T12, that was more favourable, as it reduced motion at adjacent levels without a stark increase in stiffness. Moreover, APS plus transverse process hooks had the most linear change for range of motion across the entire T3-T7 range.ConclusionsPresent findings suggest that APS plus transverse process hooks has a favourable biomechanical effect that may reduce PJK for long spinal fusions compared to the other constructs examined.</p>\",\"PeriodicalId\":12680,\"journal\":{\"name\":\"Global Spine Journal\",\"volume\":\" \",\"pages\":\"1685-1694\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Spine Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/21925682241259695\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682241259695","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Topping-Off a Long Thoracic Stabilization With Semi-Rigid Constructs May Have Favorable Biomechanical Effects to Prevent Proximal Junctional Kyphosis: A Biomechanical Comparison.
Study DesignIn-vitro cadaveric biomechanical study.ObjectivesLong posterior spinal fusion is a standard treatment for adult spinal deformity. However, these rigid constructs are known to alter motion and stress to the adjacent non-instrumented vertebrae, increasing the risk of proximal junctional kyphosis (PJK). This study aimed to biomechanically compare a standard rigid construct vs constructs "topped off" with a semi-rigid construct. By understanding semi-rigid constructs' effect on motion and overall construct stiffness, surgeons and researchers could better optimize fusion constructs to potentially decrease the risk of PJK and the need for revision surgery.MethodsNine human cadaveric spines (T1-T12) underwent non-destructive biomechanical range of motion tests in pure bending or torsion and were instrumented with an all-pedicle-screw (APS) construct from T6-T9. The specimens were sequentially instrumented with semi-rigid constructs at T5: (i) APS plus sublaminar bands; (ii) APS plus supralaminar hooks; (iii) APS plus transverse process hooks; and (iv) APS plus short pedicle screws.ResultsAPS plus transverse process hooks had a range of motion (ie, relative angle) for T4-T5 and T5-T6, as well as an overall mechanical stiffness for T1-T12, that was more favourable, as it reduced motion at adjacent levels without a stark increase in stiffness. Moreover, APS plus transverse process hooks had the most linear change for range of motion across the entire T3-T7 range.ConclusionsPresent findings suggest that APS plus transverse process hooks has a favourable biomechanical effect that may reduce PJK for long spinal fusions compared to the other constructs examined.
期刊介绍:
Global Spine Journal (GSJ) is the official scientific publication of AOSpine. A peer-reviewed, open access journal, devoted to the study and treatment of spinal disorders, including diagnosis, operative and non-operative treatment options, surgical techniques, and emerging research and clinical developments.GSJ is indexed in PubMedCentral, SCOPUS, and Emerging Sources Citation Index (ESCI).