随机加权双方形图谱的马琴科-帕斯图尔定律

A. V. Nadutkina, A. N. Tikhomirov, D. A. Timushev
{"title":"随机加权双方形图谱的马琴科-帕斯图尔定律","authors":"A. V. Nadutkina, A. N. Tikhomirov, D. A. Timushev","doi":"10.1134/s1055134424020056","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the spectra of random weighted bipartite graphs. We establish that, under\nspecific assumptions on the edge probabilities, the symmetrized empirical spectral distribution\nfunction of the graph’s adjacency matrix converges to the symmetrized Marchenko-Pastur\ndistribution function.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marchenko–Pastur Law for Spectra of Random Weighted Bipartite Graphs\",\"authors\":\"A. V. Nadutkina, A. N. Tikhomirov, D. A. Timushev\",\"doi\":\"10.1134/s1055134424020056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the spectra of random weighted bipartite graphs. We establish that, under\\nspecific assumptions on the edge probabilities, the symmetrized empirical spectral distribution\\nfunction of the graph’s adjacency matrix converges to the symmetrized Marchenko-Pastur\\ndistribution function.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134424020056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134424020056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了随机加权双方形图的谱。我们证明,在边概率的特定假设下,图的邻接矩阵的对称经验谱分布函数会收敛到对称的马琴科-帕斯图分布函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marchenko–Pastur Law for Spectra of Random Weighted Bipartite Graphs

Abstract

We study the spectra of random weighted bipartite graphs. We establish that, under specific assumptions on the edge probabilities, the symmetrized empirical spectral distribution function of the graph’s adjacency matrix converges to the symmetrized Marchenko-Pastur distribution function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信