Nicholas Lamothe, Kayla Elliott, Yu Pei, Yichun Shi, Kirsten Macdonald, Sarah Jane Payne, Zhe She
{"title":"利用计时器进行饮用水中锰的电化学检测","authors":"Nicholas Lamothe, Kayla Elliott, Yu Pei, Yichun Shi, Kirsten Macdonald, Sarah Jane Payne, Zhe She","doi":"10.1007/s12678-024-00878-7","DOIUrl":null,"url":null,"abstract":"<div><p>Methods for detecting contaminants in drinking water are crucial for protecting public health. Despite manganese (Mn) being an essential mineral for humans, Mn in high concentrations is suspected of being associated with negative cognitive and neurological effects on humans, especially on children. Current methods of detection, though reliable, are limited in the application to real-time easy-to-use, field or bench-top monitoring applications for testing drinking water. Herein, chronoamperometry (CA) is explored to quantitatively analyze manganese samples for drinking water applications. CA proved to be effective at measuring the concentration of Mn<sup>2+</sup> in water samples with excellent recovery rates (97.8%) and reproducibility between electrodes. With 1-min deposition using bare gold electrodes, CA was able to obtain a detection limit of 34.3 µM. Furthermore, with a 5-min deposition using bare gold electrodes, CA was able to obtain a detection limit of 4.64 µM. This new CA method also offers a simplified cleaning method that will allow electrodes to be used continuously for differing samples or replicate tests. The cleaning procedure permits the reuse of electrodes, while simultaneously eliminating the need for special surface modifications on the electrodes. Ultimately, this cleaning procedure offers a faster and more efficient procedure than previous methods such as polishing. The CA method also demonstrated minimal interference effects when tested with varieties of water hardness, ionic strength, common electroactive species (Cu<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, and Cl<sup>−</sup>), and organic matters in aqueous environments. This CA method is easy to use, requires portable equipment, uses reagents that are easily accessible, and does not require extensive sample preparation.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Detection of Manganese in Drinking Water with Chronoamperometry\",\"authors\":\"Nicholas Lamothe, Kayla Elliott, Yu Pei, Yichun Shi, Kirsten Macdonald, Sarah Jane Payne, Zhe She\",\"doi\":\"10.1007/s12678-024-00878-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methods for detecting contaminants in drinking water are crucial for protecting public health. Despite manganese (Mn) being an essential mineral for humans, Mn in high concentrations is suspected of being associated with negative cognitive and neurological effects on humans, especially on children. Current methods of detection, though reliable, are limited in the application to real-time easy-to-use, field or bench-top monitoring applications for testing drinking water. Herein, chronoamperometry (CA) is explored to quantitatively analyze manganese samples for drinking water applications. CA proved to be effective at measuring the concentration of Mn<sup>2+</sup> in water samples with excellent recovery rates (97.8%) and reproducibility between electrodes. With 1-min deposition using bare gold electrodes, CA was able to obtain a detection limit of 34.3 µM. Furthermore, with a 5-min deposition using bare gold electrodes, CA was able to obtain a detection limit of 4.64 µM. This new CA method also offers a simplified cleaning method that will allow electrodes to be used continuously for differing samples or replicate tests. The cleaning procedure permits the reuse of electrodes, while simultaneously eliminating the need for special surface modifications on the electrodes. Ultimately, this cleaning procedure offers a faster and more efficient procedure than previous methods such as polishing. The CA method also demonstrated minimal interference effects when tested with varieties of water hardness, ionic strength, common electroactive species (Cu<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, and Cl<sup>−</sup>), and organic matters in aqueous environments. This CA method is easy to use, requires portable equipment, uses reagents that are easily accessible, and does not require extensive sample preparation.</p></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-024-00878-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00878-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical Detection of Manganese in Drinking Water with Chronoamperometry
Methods for detecting contaminants in drinking water are crucial for protecting public health. Despite manganese (Mn) being an essential mineral for humans, Mn in high concentrations is suspected of being associated with negative cognitive and neurological effects on humans, especially on children. Current methods of detection, though reliable, are limited in the application to real-time easy-to-use, field or bench-top monitoring applications for testing drinking water. Herein, chronoamperometry (CA) is explored to quantitatively analyze manganese samples for drinking water applications. CA proved to be effective at measuring the concentration of Mn2+ in water samples with excellent recovery rates (97.8%) and reproducibility between electrodes. With 1-min deposition using bare gold electrodes, CA was able to obtain a detection limit of 34.3 µM. Furthermore, with a 5-min deposition using bare gold electrodes, CA was able to obtain a detection limit of 4.64 µM. This new CA method also offers a simplified cleaning method that will allow electrodes to be used continuously for differing samples or replicate tests. The cleaning procedure permits the reuse of electrodes, while simultaneously eliminating the need for special surface modifications on the electrodes. Ultimately, this cleaning procedure offers a faster and more efficient procedure than previous methods such as polishing. The CA method also demonstrated minimal interference effects when tested with varieties of water hardness, ionic strength, common electroactive species (Cu2+, Fe2+, Fe3+, and Cl−), and organic matters in aqueous environments. This CA method is easy to use, requires portable equipment, uses reagents that are easily accessible, and does not require extensive sample preparation.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.